Deconvolution of a Cumulative Distribution Function with Some Non-standard Noise Densities

被引:0
|
作者
Dang Duc Trong
Cao Xuan Phuong
机构
[1] University of Science,Faculty of Mathematics and Computer Science
[2] Vietnam National University Ho Chi Minh City,Faculty of Mathematics and Statistics
[3] Ton Duc Thang University,undefined
来源
关键词
Deconvolution; Cumulative distribution function; Non-standard noise densities; 62G05; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a continuous random variable having an unknown cumulative distribution function F. We study the problem of estimating F based on i.i.d. observations of a continuous random variable Y from the model Y = X + Z. Here, Z is a random noise distributed with known density g and is independent of X. We focus on some cases of g in which its Fourier transform can vanish on a countable subset of ℝ. We propose an estimator F̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat F$\end{document} for F and then investigate upper bounds on convergence rate of F̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat F$\end{document} under the root mean squared error. Some numerical experiments are also provided.
引用
收藏
页码:327 / 353
页数:26
相关论文
共 50 条