Some ring-shaped potentials as a generalized 4-D isotropic oscillator. Periodic orbits

被引:0
|
作者
Eva Tresaco
Sebastián Ferrer
机构
[1] Universidad de Zaragoza,Dpto. de Matemática Aplicada
[2] Universidad de Murcia,Dpto. de Matemática Aplicada
关键词
4-D isotropic oscillators; Generalized Hartmann potential; Ring-shaped systems; Pöschl-Teller potential; Superintegrability;
D O I
暂无
中图分类号
学科分类号
摘要
A generalized integrable biparametric family of 4-D isotropic oscillators is proposed. It allows to treat in a unified way, Pöschl-Teller, Hartmann and other ring-shaped systems. This approach, based in the use of two canonical extensions, helps to simplify the studies of classical aspects of those systems. As an illustration, an analysis of the periodic solutions of those system is presented.
引用
收藏
页码:337 / 352
页数:15
相关论文
共 15 条
  • [1] Some ring-shaped potentials as a generalized 4-D isotropic oscillator. Periodic orbits
    Tresaco, Eva
    Ferrer, Sebastian
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2010, 107 (03): : 337 - 352
  • [2] TOPOLOGY AND PERIODIC ORBITS OF RING-SHAPED POTENTIALS AS A GENERALIZED 4-D ISOTROPIC OSCILLATOR
    Balsas, M. C.
    Ferrer, S.
    Jimenez, E. S.
    Vera, J. A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09): : 2809 - 2821
  • [4] Bound states of Klein-Gordon equation for double ring-shaped oscillator scalar and vector potentials
    Lu, FL
    Chen, CY
    Sun, DS
    CHINESE PHYSICS, 2005, 14 (03): : 463 - 467
  • [5] Energy spectra of Hartmann and ring-shaped oscillator potentials using the quantum Hamilton-Jacobi formalism
    Gharbi, A.
    Bouda, A.
    PHYSICA SCRIPTA, 2013, 88 (04)
  • [6] Bound states of Klein-Gordon equation for ring-shaped harmonic oscillator scalar and vector potentials
    Qiang, WC
    CHINESE PHYSICS, 2003, 12 (02): : 136 - 139
  • [7] Bound states of Klein-Gordon equation for ring-shaped non-spherical harmonic oscillator potentials
    Lu, FL
    Chen, CY
    ACTA PHYSICA SINICA, 2004, 53 (06) : 1652 - 1656
  • [8] κ state solutions for the fermionic massive spin-1/2 particles interacting with double ring-shaped Kratzer and oscillator potentials
    Oyewumi, K. J.
    Falaye, B. J.
    Onate, C. A.
    Oluwadare, O. J.
    Yahya, W. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2014, 23 (02):
  • [9] Bound states of Klein-Gordon equation and Dirac equation for ring-shaped non-spherical oscillator scalar and vector potentials
    Zhang, XA
    Chen, K
    Duan, ZL
    CHINESE PHYSICS, 2005, 14 (01): : 42 - 44
  • [10] Bound states of the Dirac equation with non-central scalar and vector potentials: a modified double ring-shaped generalized Cornell potential
    Djahida Bouchefra
    Badredine Boudjedaa
    The European Physical Journal Plus, 137