Asymptotics of Determinants of Bessel Operators

被引:0
|
作者
Estelle L. Basor
Torsten Ehrhardt
机构
[1] Department of Mathematics,
[2] California Polytechnic State University,undefined
[3] San Luis Obispo,undefined
[4] CA 93407,undefined
[5] USA. E-mail: ebasor@calpoly.edu,undefined
[6] Fakultät für Mathematik,undefined
[7] Technische Universität Chemnitz,undefined
[8] 09107 Chemnitz,undefined
[9] Germany. E-mail: tehrhard@mathematik.tu-chemnitz.de,undefined
来源
关键词
Smooth Function; Bessel Function; Integral Operator; Asymptotic Formula; Bessel Operator;
D O I
暂无
中图分类号
学科分类号
摘要
 For aL∞(ℝ+)∩L1(ℝ+) the truncated Bessel operator Bτ(a) is the integral operator acting on L2[0,τ] with the kernel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where Jν stands for the Bessel function with ν>−1. In this paper we determine the asymptotics of the determinant det(I+Bτ(a)) as τ→∞ for sufficiently smooth functions a for which a(x)≠1 for all x[0,∞). The asymptotic formula is of the form det(I+Bτ(a))∼GτE with certain constants G and E, and thus similar to the well-known Szegö-Akhiezer-Kac formula for truncated Wiener-Hopf determinants.
引用
收藏
页码:491 / 516
页数:25
相关论文
共 50 条