The Bargmann-Wigner formalism for spin 2 fields

被引:0
|
作者
Valeri V. Dvoeglazov
机构
[1] Universidad Autónoma de Zacatecas,Escuela de Física
关键词
03.65.Pm; 04.50.+h; 11.30.Cp;
D O I
10.1007/BF03042005
中图分类号
学科分类号
摘要
The Bargmann-Wigner formalism has been applied to describe the spin-2 field in terms of the symmetric fourth-rank multi-Dirac spinor Ψαβγδ. A serious problem of the standard anzatz is that the resulting equation of motion has the trivial solution with all field components being independently equal to zero. We here show that this problem is an artefact of the neglection of terms containing the matrix γ5 in the decomposition of ϕ into the Clifford algebra basis. We further emphasize importance of the gauge 4-vector field in that respect.
引用
收藏
页码:7 / 14
页数:7
相关论文
共 50 条
  • [1] LAGRANGIAN FOR SPIN-2 FIELDS IN BARGMANN-WIGNER FORMALISM
    LARSEN, M
    REPKO, W
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (01): : 33 - 33
  • [2] SPIN IN BARGMANN-WIGNER FORMALISM
    KALNAY, AJ
    TORRES, PL
    [J]. ACTA CIENTIFICA VENEZOLANA, 1971, 22 : 35 - +
  • [3] A LAGRANGE FORMALISM AND RELATIVISTIC QUANTIZATION OF BARGMANN-WIGNER FIELDS
    KAMEFUCHI, S
    TAKAHASHI, Y
    [J]. NUOVO CIMENTO A, 1966, 44 (01): : 1 - +
  • [4] The modified Bargmann-Wigner formalism for bosons of spin 1 and 2
    Dvoeglazov, Valeri V.
    [J]. VII MEXICAN SCHOOL ON GRAVITATION AND MATHEMATICAL PHYSICS, 2007, 91
  • [5] BARGMANN-WIGNER AND WEYL SPIN-3/2 FIELDS
    LEITELOPES, J
    SPEHLER, D
    [J]. LETTERE AL NUOVO CIMENTO, 1979, 26 (17): : 567 - 572
  • [6] Generalization of the Bargmann-Wigner construction for infinite-spin fields
    Buchbinder, I. L.
    Isaev, A. P.
    Podoinitsyn, M. A.
    Fedoruk, S. A.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 216 (01) : 973 - 999
  • [7] Galilean covariant theories for Bargmann-Wigner fields with arbitrary spin
    Kobayashi, M.
    de Montigny, M.
    Khanna, F. C.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) : 1117 - 1140
  • [8] ELECTROMAGNETIC INTERACTION OF BARGMANN-WIGNER FIELDS
    GUPTA, SN
    REPKO, WW
    [J]. PHYSICAL REVIEW, 1968, 165 (05): : 1415 - &
  • [9] SPIN 1 AND BARGMANN-WIGNER EQUATIONS
    PORTNER, G
    RAFANELL.K
    [J]. NUOVO CIMENTO A, 1968, 56 (01): : 218 - +
  • [10] ON BARGMANN-WIGNER THEORY FOR PARTICLES OF SPIN .2.
    VIDAL, A
    MACDOWELL, SW
    [J]. NUOVO CIMENTO A, 1965, 40 (02): : 645 - +