Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega\subseteq \mathbb{R}^n$$\end{document} a bounded open set, N ≥ 2, and let p > 1; we prove existence of a renormalized solution for parabolic problems whose model is\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ \begin{array}{lll} u_t - \Delta _p u = \mu &{\rm in}\,(0,T) \times \Omega , \\ u(0,x) = u_0 &{\rm in}\, \Omega , \\u(t,x) = 0 &{\rm on}\, (0,T) \times \partial \Omega, \\ \end{array} \right.$$\end{document}where T > 0 is a positive constant, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu\in M(Q)$$\end{document} is a measure with bounded variation over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q=(0,T) \times \Omega, u_o\in L^1(\Omega)$$\end{document}, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\Delta_{p} u=-{\rm div} (|\nabla u|^{p-2}\nabla u )$$\end{document} is the usual p-Laplacian.