Renormalized solutions of nonlinear parabolic equations with general measure data

被引:0
|
作者
Francesco Petitta
机构
[1] Università La Sapienza,Dipartimento di Matematica
来源
关键词
Nonlinear parabolic equations; Parabolic capacity; Measure data; 35K55; 35D05; 35D10; 35R05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega\subseteq \mathbb{R}^n$$\end{document} a bounded open set, N ≥  2, and let p > 1; we prove existence of a renormalized solution for parabolic problems whose model is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{array}{lll} u_t - \Delta _p u = \mu &{\rm in}\,(0,T) \times \Omega , \\ u(0,x) = u_0 &{\rm in}\, \Omega , \\u(t,x) = 0 &{\rm on}\, (0,T) \times \partial \Omega, \\ \end{array} \right.$$\end{document}where T > 0 is a positive constant, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu\in M(Q)$$\end{document} is a measure with bounded variation over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=(0,T) \times \Omega, u_o\in L^1(\Omega)$$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta_{p} u=-{\rm div} (|\nabla u|^{p-2}\nabla u )$$\end{document} is the usual p-Laplacian.
引用
收藏
页码:563 / 604
页数:41
相关论文
共 50 条
  • [1] Renormalized solutions of nonlinear parabolic equations with general measure data
    Petitta, Francesco
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (04) : 563 - 604
  • [2] RENORMALIZED SOLUTIONS FOR NONLINEAR PARABOLIC EQUATIONS WITH GENERAL MEASURE DATA
    Abdellaoui, Mohammed
    Azroul, Elhoussine
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [3] Renormalized solutions of nonlinear parabolic equations with diffuse measure data
    Blanchard, Dominique
    Petitta, Francesco
    Redwane, Hicham
    [J]. MANUSCRIPTA MATHEMATICA, 2013, 141 (3-4) : 601 - 635
  • [4] Renormalized solutions of nonlinear parabolic equations with diffuse measure data
    Dominique Blanchard
    Francesco Petitta
    Hicham Redwane
    [J]. Manuscripta Mathematica, 2013, 141 : 601 - 635
  • [5] On the Notion of Renormalized Solution to Nonlinear Parabolic Equations with General Measure Data
    Petitta F.
    Porretta A.
    [J]. Journal of Elliptic and Parabolic Equations, 2015, 1 (1) : 201 - 214
  • [6] Existence of a Renormalized Solution of Nonlinear Parabolic Equations With General Measure Data
    Marah, Amine
    Redwane, Hicham
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [7] Renormalized solutions to nonlinear parabolic problems with blowing up coefficients and general measure data
    Abdellaoui, Mohammed
    Azroul, Elhoussine
    [J]. RICERCHE DI MATEMATICA, 2019, 68 (02) : 745 - 767
  • [8] Renormalized solutions to nonlinear parabolic problems with blowing up coefficients and general measure data
    Mohammed Abdellaoui
    Elhoussine Azroul
    [J]. Ricerche di Matematica, 2019, 68 : 745 - 767
  • [9] Existence of a Renormalized Solution of Nonlinear Parabolic Equations with Lower Order Term and General Measure Data
    Marah, A.
    Bouajaja, A.
    Redwane, H.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (03): : 93 - 114
  • [10] Existence results of renormalized solutions for nonlinear p(.)-parabolic equations with possibly singular measure data
    Moutaouakil, Khadija
    Bennouna, Jaouad
    El Hamdaoui, Bouchra
    Redwane, Hicham
    [J]. ADVANCES IN OPERATOR THEORY, 2021, 6 (03)