Faster algorithms for extensive-form game solving via improved smoothing functions

被引:0
|
作者
Christian Kroer
Kevin Waugh
Fatma Kılınç-Karzan
Tuomas Sandholm
机构
[1] Carnegie Mellon University,Computer Science Department
[2] University of Alberta,Department of Computing Science
[3] Carnegie Mellon University,Tepper School of Business
来源
Mathematical Programming | 2020年 / 179卷
关键词
Extensive-form game; Bilinear saddle-point problem; First-order method; Nash equilibrium; Zero-sum game; 91A05; 91A18; 90C06; 90C25; 90C47; 65K05; 52A41;
D O I
暂无
中图分类号
学科分类号
摘要
Sparse iterative methods, in particular first-order methods, are known to be among the most effective in solving large-scale two-player zero-sum extensive-form games. The convergence rates of these methods depend heavily on the properties of the distance-generating function that they are based on. We investigate both the theoretical and practical performance improvement of first-order methods (FOMs) for solving extensive-form games through better design of the dilated entropy function—a class of distance-generating functions related to the domains associated with the extensive-form games. By introducing a new weighting scheme for the dilated entropy function, we develop the first distance-generating function for the strategy spaces of sequential games that has only a logarithmic dependence on the branching factor of the player. This result improves the overall convergence rate of several FOMs working with dilated entropy function by a factor of Ω(bdd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (b^dd)$$\end{document}, where b is the branching factor of the player, and d is the depth of the game tree. Thus far, counterfactual regret minimization methods have been faster in practice, and more popular, than FOMs despite their theoretically inferior convergence rates. Using our new weighting scheme and a practical parameter tuning procedure we show that, for the first time, the excessive gap technique, a classical FOM, can be made faster than the counterfactual regret minimization algorithm in practice for large games, and that the aggressive stepsize scheme of CFR+ is the only reason that the algorithm is faster in practice.
引用
收藏
页码:385 / 417
页数:32
相关论文
共 30 条
  • [1] Faster algorithms for extensive-form game solving via improved smoothing functions
    Kroer, Christian
    Waugh, Kevin
    Kilinc-Karzan, Fatma
    Sandholm, Tuomas
    MATHEMATICAL PROGRAMMING, 2020, 179 (1-2) : 385 - 417
  • [2] Designing Learning Algorithms over the Sequence Form of an Extensive-Form Game
    Manino, Edoardo
    Gatti, Nicola
    Restelli, Marcello
    AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2017, : 1622 - 1624
  • [3] Smoothing Method for Approximate Extensive-Form Perfect Equilibrium
    Kroer, Christian
    Farina, Gabriele
    Sandholm, Tuomas
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 295 - 301
  • [4] Theoretical and Practical Advances on Smoothing for Extensive-Form Games
    Kroer, Christian
    Waugh, Kevin
    Kilinc-Karzan, Fatma
    Sandholm, Tuomas
    EC'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2017, : 693 - 693
  • [5] Faster Optimistic Online Mirror Descent for Extensive-Form Games
    Jiang, Huacong
    Liu, Weiming
    Li, Bin
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2022, 13629 : 90 - 103
  • [6] Solving Large Extensive-Form Games with Strategy Constraints
    Davis, Trevor
    Waugh, Kevin
    Bowling, Michael
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1861 - 1868
  • [7] A Unified Framework for Extensive-Form Game Abstraction with Bounds
    Kroer, Christian
    Sandholm, Tuomas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [8] An Extensive-Form Game Paradigm for Visual Field Testing via Deep Reinforcement Learning
    Ma, Rui
    Tao, Yudong
    Khodeiry, Mohamed M.
    Liu, Xiangxiang
    Mendoza, Ximena
    Liu, Yuan
    Shyu, Mei-Ling
    Lee, Richard K.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (02) : 514 - 523
  • [9] Block-Coordinate Methods and Restarting for Solving Extensive-Form Games
    Chakrabarti, Darshan
    Diakonikolas, Jelena
    Kroer, Christian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] Connecting Optimal Ex-Ante Collusion in Teams to Extensive-Form Correlation: Faster Algorithms and Positive Complexity Results
    Farina, Gabriele
    Celli, Andrea
    Gatti, Nicola
    Sandholm, Tuomas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139