Can whole-exome sequencing data be used for linkage analysis?

被引:0
|
作者
Steven Gazal
Simon Gosset
Edgard Verdura
Françoise Bergametti
Stéphanie Guey
Marie-Claude Babron
Elisabeth Tournier-Lasserve
机构
[1] INSERM,
[2] IAME,undefined
[3] UMR 1137,undefined
[4] Plateforme de Génomique Constitutionnelle du GHU Nord,undefined
[5] Assistance Publique des Hôpitaux de Paris (APHP),undefined
[6] Hôpital Bichat,undefined
[7] Univ Paris Diderot,undefined
[8] IAME,undefined
[9] UMR 1137,undefined
[10] Sorbonne Paris Cité,undefined
[11] INSERM,undefined
[12] UMR 1161,undefined
[13] Univ Paris-Diderot,undefined
[14] Génétique et Physiopathologie des Maladies Cérébro-Vasculaires,undefined
[15] UMR 1161,undefined
[16] Sorbonne Paris Cité,undefined
[17] INSERM,undefined
[18] Genetic Variability and Human Diseases,undefined
[19] UMR 946,undefined
[20] Univ Paris-Diderot,undefined
[21] UMR 946,undefined
[22] Sorbonne Paris Cité,undefined
[23] Assistance Publique des Hôpitaux de Paris,undefined
[24] Hôpital Lariboisière,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Whole-exome sequencing (WES) has become the strategy of choice to identify causal variants in monogenic disorders. However, the list of candidate variants can be quite large, including false positives generated by sequencing errors. To reduce this list of candidate variants to the most relevant ones, a cost-effective strategy would be to focus on regions of linkage identified through linkage analysis conducted with common polymorphisms present in WES data. However, the non-uniform exon coverage of the genome and the lack of knowledge on the power of this strategy have largely precluded its use so far. To compare the performance of linkage analysis conducted with WES and SNP chip data in different situations, we performed simulations on two pedigree structures with, respectively, a dominant and a recessive trait segregating. We found that the performance of the two sets of markers at excluding regions of the genome were very similar, and there was no real gain at using SNP chip data compared with using the common SNPs extracted from WES data. When analyzing the real WES data available for these two pedigrees, we found that the linkage information derived from the WES common polymorphisms was able to reduce by half the list of candidate variants identified by a simple filtering approach. Conducting linkage analysis with WES data available on pedigrees and excluding among the candidate variants those that fall in excluded linkage regions is thus a powerful and cost-effective strategy to reduce the number of false-positive candidate variants.
引用
收藏
页码:581 / 586
页数:5
相关论文
共 50 条
  • [1] Can whole-exome sequencing data be used for linkage analysis?
    Gazal, Steven
    Gosset, Simon
    Verdura, Edgard
    Bergametti, Francoise
    Guey, Stephanie
    Babron, Marie-Claude
    Tournier-Lasserve, Elisabeth
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2016, 24 (04) : 581 - 586
  • [2] Reliable Analysis of Clinical Tumor-Only Whole-Exome Sequencing Data
    Oh, Sehyun
    Geistlinger, Ludwig
    Ramos, Marcel
    Morgan, Martin
    Waldron, Levi
    Riester, Markus
    [J]. JCO CLINICAL CANCER INFORMATICS, 2020, 4 : 321 - 335
  • [3] Tiered analysis of whole-exome sequencing for epilepsy diagnosis
    Dunn, Paul J.
    Maher, Bridget H.
    Albury, Cassie L.
    Stuart, Shani
    Sutherland, Heidi G.
    Maksemous, Neven
    Benton, Miles C.
    Smith, Robert A.
    Haupt, Larisa M.
    Griffiths, Lyn R.
    [J]. MOLECULAR GENETICS AND GENOMICS, 2020, 295 (03) : 751 - 763
  • [4] Analysis of Whole-Exome Sequencing Data for Alzheimer Disease Stratified by APOE Genotype
    Ma, Yiyi
    Jun, Gyungah R.
    Zhang, Xiaoling
    Chung, Jaeyoon
    No, Adam C.
    Chen, Yuning
    Bellenguez, Celine
    Hamilton-Nelson, Kara
    Martin, Eden R.
    Kunkle, Brian W.
    Bis, Joshua C.
    Debette, Stephanie
    DeStefano, Anita L.
    Fornage, Myriam
    Nicolas, Gael
    van Duijn, Cornelia
    Bennett, David A.
    De Jager, Philip L.
    Mayeux, Richard
    Haines, Jonathan L.
    Pericak-Vance, Margaret A.
    Seshadri, Sudha
    Lambert, Jean-Charles
    Schellenberg, Gerard D.
    Lunetta, Kathryn L.
    Farrer, Lindsay A.
    Grenier-Boley, Benjamin
    Charbonnier, Camille
    Quenez, Olivier
    Chauhan, Ganesh
    Wallon, David
    Rousseau, Stephan
    Richard, Anne Claire
    Boland, Anne
    Bourque, Guillaume
    Munter, Hans Markus
    Olaso, Robert
    Meyer, Vincent
    Rollin-Sillaire, Adeline
    Pasquier, Florence
    Letenneur, Luc
    Redon, Richard
    Dartigues, Jean-Francois
    Tzourio, Christophe
    Lathrop, Mark
    Deleuze, Jean-Francois
    Hannequin, Didier
    Genin, Emmanuelle
    Amouyel, Philippe
    Campion, Dominique
    [J]. JAMA NEUROLOGY, 2019, 76 (09) : 1099 - 1108
  • [5] Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing
    Corominas, Jordi
    Klein, Marieke
    Zayats, Tetyana
    Rivero, Olga
    Ziegler, Georg C.
    Pauper, Marc
    Neveling, Kornelia
    Poelmans, Geert
    Jansch, Charline
    Svirin, Evgeniy
    Geissler, Julia
    Weber, Heike
    Reif, Andreas
    Vasquez, Alejandro Arias
    Galesloot, Tessel E.
    Kiemeney, Lambertus A. L. M.
    Buitelaar, Jan K.
    Ramos-Quiroga, Josep-Antoni
    Cormand, Bru
    Ribases, Marta
    Hveem, Kristian
    Gabrielsen, Maiken Elvestad
    Hoffmann, Per
    Cichon, Sven
    Haavik, Jan
    Johansson, Stefan
    Jacob, Christian P.
    Romanos, Marcel
    Franke, Barbara
    Lesch, Klaus-Peter
    [J]. MOLECULAR PSYCHIATRY, 2020, 25 (09) : 2047 - 2057
  • [6] Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing
    Jordi Corominas
    Marieke Klein
    Tetyana Zayats
    Olga Rivero
    Georg C. Ziegler
    Marc Pauper
    Kornelia Neveling
    Geert Poelmans
    Charline Jansch
    Evgeniy Svirin
    Julia Geissler
    Heike Weber
    Andreas Reif
    Alejandro Arias Vasquez
    Tessel E. Galesloot
    Lambertus A. L. M. Kiemeney
    Jan K. Buitelaar
    Josep-Antoni Ramos-Quiroga
    Bru Cormand
    Marta Ribasés
    Kristian Hveem
    Maiken Elvestad Gabrielsen
    Per Hoffmann
    Sven Cichon
    Jan Haavik
    Stefan Johansson
    Christian P. Jacob
    Marcel Romanos
    Barbara Franke
    Klaus-Peter Lesch
    [J]. Molecular Psychiatry, 2020, 25 : 2047 - 2057
  • [7] Tiered analysis of whole-exome sequencing for epilepsy diagnosis
    Paul J. Dunn
    Bridget H. Maher
    Cassie L. Albury
    Shani Stuart
    Heidi G. Sutherland
    Neven Maksemous
    Miles C. Benton
    Robert A. Smith
    Larisa M. Haupt
    Lyn R. Griffiths
    [J]. Molecular Genetics and Genomics, 2020, 295 : 751 - 763
  • [8] Whole-exome sequencing to analyze population structure, parental inbreeding, and familial linkage
    Belkadi, Aziz
    Pedergnana, Vincent
    Cobat, Aurelie
    Itan, Yuval
    Vincent, Quentin B.
    Abhyankar, Avinash
    Shang, Lei
    El Baghdadi, Jamila
    Bousfiha, Aziz
    Alcais, Alexandre
    Boisson, Bertrand
    Casanova, Jean-Laurent
    Abel, Laurent
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (24) : 6713 - 6718
  • [9] Genetic influences on epilepsy outcomes: A whole-exome sequencing and health care records data linkage study
    Fonferko-Shadrach, Beata
    Lacey, Arron S.
    Strafford, Huw
    Jones, Carys
    Baker, Mark
    Powell, Robert
    Akbari, Ashley
    Lyons, Ronan A.
    Ford, David
    Thompson, Simon
    Jones, Kerina H.
    Chung, Seo-Kyung
    Pickrell, William O.
    Rees, Mark I.
    [J]. EPILEPSIA, 2023, 64 (11) : 3099 - 3108
  • [10] HPexome: An automated tool for processing whole-exome sequencing data
    Cendes, Lucas L.
    de Souza, Welliton
    Lopes-Cendes, Iscia
    Carvalho, Benilton S.
    [J]. SOFTWAREX, 2020, 11