Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schrödinger equations

被引:0
|
作者
Tao Xu
Yong Chen
机构
[1] East China Normal University,Shanghai Key Laboratory of Trustworthy Computing
[2] East China Normal University,MOE International Joint Lab of Trustworthy Software
[3] Zhejiang Normal University,Department of Physics
来源
Nonlinear Dynamics | 2018年 / 92卷
关键词
Interactions of localized waves; Rogue wave; Soliton; Breather; Three-component coupled derivative nonlinear Schrödinger equations; Darboux transformation;
D O I
暂无
中图分类号
学科分类号
摘要
The Darboux transformation of the three-component coupled derivative nonlinear Schrödinger equations is constructed. Based on the special vector solution generated from the corresponding Lax pair, various interactions of localized waves are derived. Here, we focus on the higher-order interactional solutions among higher-order rogue waves, multi-solitons, and multi-breathers. It is defined as the identical type of interactional solution that the same combination appears among these three components q1,q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_1, q_2$$\end{document}, and q3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_3$$\end{document}, without considering different arrangements among them. According to our method and definition, these interactional solutions are completely classified as six types, among which there are four mixed interactions of localized waves in these three different components. In particular, the free parameters μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} play the important roles in dynamics structures of the interactional solutions. For example, different nonlinear localized waves merge with each other by increasing the absolute values of these two parameters. Additionally, these results demonstrate that more abundant and novel localized waves may exist in the multi-component coupled systems than in the uncoupled ones.
引用
收藏
页码:2133 / 2142
页数:9
相关论文
共 50 条
  • [1] Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schrodinger equations
    Xu, Tao
    Chen, Yong
    [J]. NONLINEAR DYNAMICS, 2018, 92 (04) : 2133 - 2142
  • [2] Localized waves in three-component coupled nonlinear Schrdinger equation
    徐涛
    陈勇
    [J]. Chinese Physics B, 2016, (09) : 184 - 192
  • [3] Soliton waves with optical solutions to the three-component coupled nonlinear Schrödinger equation
    Ali, Karmina K.
    Yusuf, Abdullahi
    [J]. MODERN PHYSICS LETTERS A, 2024, 39 (15)
  • [4] Localized Waves for the Coupled Mixed Derivative Nonlinear Schrödinger Equation in a Birefringent Optical Fiber
    N. Song
    Y. X. Lei
    Y. F. Zhang
    W. Zhang
    [J]. Journal of Nonlinear Mathematical Physics, 2022, 29 : 318 - 330
  • [5] Vector rogue waves in the mixed coupled nonlinear Schrödinger equations
    Min Li
    Huan Liang
    Tao Xu
    Changjing Liu
    [J]. The European Physical Journal Plus, 131
  • [6] Localized waves of the coupled cubic–quintic nonlinear Schrdinger equations in nonlinear optics
    徐涛
    陈勇
    林机
    [J]. Chinese Physics B, 2017, (12) : 84 - 97
  • [7] Higher-Order Localized Waves in Coupled Nonlinear Schrdinger Equations
    王鑫
    杨波
    陈勇
    杨云青
    [J]. Chinese Physics Letters, 2014, 31 (09) : 5 - 8
  • [8] partial derivative-DRESSING METHOD FOR THREE-COMPONENT COUPLED NONLINEAR SCHRODINGER DINGER EQUATIONS
    Yang, Shuxin
    Li, Biao
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2523 - 2533
  • [9] A general integrable three-component coupled nonlocal nonlinear Schrödinger equation
    Yan Zhang
    Yinping Liu
    Xiaoyan Tang
    [J]. Nonlinear Dynamics, 2017, 89 : 2729 - 2738
  • [10] Standing Waves of the Coupled Nonlinear Schrdinger Equations
    Linlin Yang
    Gongming Wei
    [J]. Analysis in Theory and Applications, 2014, 30 (04) : 345 - 353