Regression models with correlated errors based on functional random design

被引:0
|
作者
Karim Benhenni
Sonia Hedli-Griche
Mustapha Rachdi
机构
[1] Université Grenoble Alpes,LJK, UMR 5224 CNRS
[2] Université Sétif,AGIM Team, AGEIS EA 7407
[3] Université Grenoble Alpes,undefined
来源
TEST | 2017年 / 26卷
关键词
Random functional data; Kernel estimator; Mean squared error (MSE); Short and long memory process; Asymptotic distribution; ARFIMA and Ornstein–Uhlenbeck process; Negatively associated process; Primary 62G05; Secondary 62G07; 62G08; 62G35; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the study of the estimation of the functional regression operator when the explanatory variable takes its values in some abstract space of functions. The main goal of this paper is to establish the exact rate of convergence of the mean squared error of the functional version of the Nadaraya–Watson kernel estimator when the errors come from a stationary process under long or short memory and based on random functional data. Moreover, these theoretical results are checked through some simulations with regular (smooth) and irregular curves and then with real data.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [1] Regression models with correlated errors based on functional random design
    Benhenni, Karim
    Hedli-Griche, Sonia
    Rachdi, Mustapha
    [J]. TEST, 2017, 26 (01) : 1 - 21
  • [2] Wavelet shrinkage for regression models with random design and correlated errors
    Porto, Rogerio
    Morettin, Pedro
    Percival, Donald
    Aubin, Elisete
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (04) : 614 - 652
  • [3] The effect of correlated errors on the performance of local linear estimation of regression function based on random functional design
    Benhenni, Karim
    Hassan, Ali Hajj
    Su, Yingcai
    [J]. STATISTICAL PAPERS, 2024, 65 (06) : 3395 - 3423
  • [4] Local polynomial regression with correlated errors in random design and unknown correlation structure
    De Brabanter, K.
    Cao, F.
    Gijbels, I.
    Opsomer, J.
    [J]. BIOMETRIKA, 2018, 105 (03) : 681 - 690
  • [5] High leverage detection in general functional regression models with spatially correlated errors
    Romano, Elvira
    Giraldo, Ramon
    Mateu, Jorge
    Diana, Andrea
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2022, 38 (01) : 169 - 181
  • [6] Spline estimation of functional coefficient regression models for time series with correlated errors
    Montoril, Michel H.
    Morettin, Pedro A.
    Chiann, Chang
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 92 : 226 - 231
  • [7] REGRESSION-MODELS WITH SPATIALLY CORRELATED ERRORS
    BASU, S
    REINSEL, GC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (425) : 88 - 99
  • [8] On multiple regression models with nonstationarity correlated errors
    Rao, SS
    [J]. BIOMETRIKA, 2004, 91 (03) : 645 - 659
  • [9] Estimation of the regression operator from functional fixed-design with correlated errors
    Benhenni, K.
    Hedli-Griche, S.
    Rachdi, M.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (02) : 476 - 490
  • [10] Smoothing spline models with correlated random errors
    Wang, YD
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 341 - 348