Spectral Analysis of Transition Operators, Automata Groups and Translation in BBS

被引:0
|
作者
Tsuyoshi Kato
Satoshi Tsujimoto
Andrzej Zuk
机构
[1] Kyoto University,Department of Mathematics, Graduate School of Science
[2] Kyoto University,Department of Applied Mathematics and Physics, Graduate School of Informatics
[3] Institut de Mathematiques,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We give the automata that describe time evolution rules of the box-ball system with a carrier. It can be shown by use of tropical geometry that such systems are ultradiscrete analogues of KdV equation. We discuss their relation with the lamplighter group generated by an automaton. We present spectral analysis of the stochastic matrices induced by these automata and verify their spectral coincidence.
引用
收藏
页码:205 / 229
页数:24
相关论文
共 50 条
  • [1] Spectral Analysis of Transition Operators, Automata Groups and Translation in BBS
    Kato, Tsuyoshi
    Tsujimoto, Satoshi
    Zuk, Andrzej
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 350 (01) : 205 - 229
  • [2] Transition operators, groups, norms, and spectral radii
    Saloff-Coste, L
    Woess, W
    PACIFIC JOURNAL OF MATHEMATICS, 1997, 180 (02) : 333 - 367
  • [3] Spectral analysis for perturbed operators on Carnot groups
    Marius Măntoiu
    Archiv der Mathematik, 2017, 109 : 167 - 177
  • [4] Spectral analysis for perturbed operators on Carnot groups
    Mantoiu, Marius
    ARCHIV DER MATHEMATIK, 2017, 109 (02) : 167 - 177
  • [5] Spectral analysis for convolution operators on locally compact groups
    Mantoiu, M.
    de Aldecoa, R. Tiedra
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) : 675 - 691
  • [6] Spectral Analysis of Differential Operators with Involution and Operator Groups
    A. G. Baskakov
    N. B. Uskova
    Differential Equations, 2018, 54 : 1261 - 1265
  • [7] Spectral Analysis of Differential Operators with Involution and Operator Groups
    Baskakov, A. G.
    Uskova, N. B.
    DIFFERENTIAL EQUATIONS, 2018, 54 (09) : 1261 - 1265
  • [8] Bounded groups of translation invariant operators
    Lebedev, V
    Olevskii, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (02): : 143 - 147
  • [9] Spectral analysis of a class of Schrodinger operators exhibiting a parameter-dependent spectral transition
    Barseghyan, Diana
    Exner, Pavel
    Khrabustovskyi, Andrii
    Tater, Milos
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (16)
  • [10] SPECTRAL PROPERTIES OF UNITARY WEIGHTED TRANSLATION OPERATORS
    GROMOV, KL
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1990, 24 (03) : 233 - 235