Sub-Riemannian calculus and monotonicity of the perimeter for graphical strips

被引:0
|
作者
D. Danielli
N. Garofalo
D. M. Nhieu
机构
[1] Purdue University,Department of Mathematics
[2] Università di Padova,Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
[3] San Diego Christian College,Department of Mathematics
来源
Mathematische Zeitschrift | 2010年 / 265卷
关键词
Minimal surfaces; -mean curvature; Integration by parts; First and second variation; Monotonicity of the ; -perimeter;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the class of minimal surfaces given by the graphical strips \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal S}}$$\end{document} in the Heisenberg group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {H}}^1}$$\end{document} and we prove that for points p along the center of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {H}}^1}$$\end{document} the quantity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{\sigma_H(\mathcal S\cap B(p,r))}{r^{Q-1}}}$$\end{document} is monotone increasing. Here, Q is the homogeneous dimension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {H}}^1}$$\end{document} . We also prove that these minimal surfaces have maximum volume growth at infinity.
引用
收藏
页码:617 / 637
页数:20
相关论文
共 50 条
  • [1] Sub-Riemannian calculus and monotonicity of the perimeter for graphical strips
    Danielli, D.
    Garofalo, N.
    Nhieu, D. M.
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (03) : 617 - 637
  • [2] VARIATION OF PERIMETER MEASURE IN SUB-RIEMANNIAN GEOMETRY
    Hladky, Robert K.
    Pauls, Scott D.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (01): : 8 - 40
  • [3] Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
    Le Donne, Enrico
    Moisala, Terhi
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (3-4) : 2257 - 2285
  • [4] Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
    Enrico Le Donne
    Terhi Moisala
    Mathematische Zeitschrift, 2021, 299 : 2257 - 2285
  • [5] Sub-Riemannian calculus on hypersurfaces in Carnot groups
    Danielli, D.
    Garofalo, N.
    Nhieu, D. M.
    ADVANCES IN MATHEMATICS, 2007, 215 (01) : 292 - 378
  • [6] BV functions and sets of finite perimeter in sub-Riemannian manifolds
    Ambrosio, L.
    Ghezzi, R.
    Magnani, V.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (03): : 489 - 517
  • [7] On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds
    Tan, KH
    Yang, XP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 177 - 198
  • [8] Sub-Riemannian geometry
    Kupka, I
    ASTERISQUE, 1997, (241) : 351 - 380
  • [9] SUB-RIEMANNIAN GEOMETRY
    STRICHARTZ, RS
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1986, 24 (02) : 221 - 263
  • [10] Riemannian and Sub-Riemannian Geodesic Flows
    Godoy Molina, Mauricio
    Grong, Erlend
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) : 1260 - 1273