Geometrical Conservation Laws for Maxwell and Elasticity Systems

被引:0
|
作者
Victor P. Palamodov
机构
[1] University of Tel Aviv,School of Mathematical Sciences
来源
关键词
Lagrange manifold; symbol; residue; geodesic flow; energy; polarization; Levi-Civita connection;
D O I
暂无
中图分类号
学科分类号
摘要
The Maxwell system in inhomogeneous medium as well as the elasticity system are considered. We give a sharp form to the conservation laws of geometrical optics in the terms of the distribution theory. We show that the conservation laws keep to hold through any singular point of the wave front.
引用
收藏
页码:57 / 70
页数:13
相关论文
共 50 条
  • [1] Geometrical conservation laws for Maxwell and elasticity systems
    Palamodov, VP
    ACTA APPLICANDAE MATHEMATICAE, 2002, 74 (01) : 57 - 70
  • [2] Geometrical optics and conservation laws for the Maxwell system
    Victor P. Palamodov
    Advances in Applied Clifford Algebras, 2001, 11 (Suppl 2) : 249 - 256
  • [3] DIFFERENTIAL GEOMETRICAL DERIVATION OF CONSERVATION-LAWS IN THE THEORY OF ELASTICITY
    ALTSTADT, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (04): : T116 - T117
  • [4] GEOMETRICAL DERIVATION OF CONSERVATION LAWS
    ALDERMAN, JL
    BERGMANN, O
    JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (05) : 1639 - &
  • [5] CONSERVATION LAWS FOR TWO DIMENSIONAL HIROTA-MAXWELL-BLOCH SYSTEMS
    Bekova, Guldana
    Abykanova, Bakytgul
    Karatayeva, Kassiyet
    Shazhdekeyeva, Nurgul
    Myrzasheva, Aigul
    Karimova, Akmaral
    Suleimenova, Baktygul
    Kulzhagarova, Bazargul
    AD ALTA-JOURNAL OF INTERDISCIPLINARY RESEARCH, 2020, 10 (01): : 113 - 115
  • [6] CONSERVATION-LAWS IN NONLOCAL ELASTICITY
    VUKOBRAT, M
    KUZMANOVIC, D
    ACTA MECHANICA, 1992, 92 (1-4) : 1 - 8
  • [7] On dual conservation laws in planar elasticity
    Li, SF
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2004, 42 (11-12) : 1215 - 1239
  • [8] Conservation laws and fracture in nonlinear elasticity
    Sivaloganathan, J
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2002, : 325 - 329
  • [9] Viscoelastic flows of Maxwell fluids with conservation laws
    Boyaval, Sebastien
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (03): : 807 - 831
  • [10] Symmetries, Lagrangian and Conservation Laws for the Maxwell Equations
    Nail H. Ibragimov
    Acta Applicandae Mathematicae, 2009, 105 : 157 - 187