Heavy Traffic Limits for Queues with Many Deterministic Servers

被引:0
|
作者
Predrag Jelenković
Avishai Mandelbaum
Petar Momčilović
机构
[1] Columbia University,Department of Electrical Engineering
[2] Technion – Israel Institute of Technology,Faculty of Industrial Engineering and Management
来源
Queueing Systems | 2004年 / 47卷
关键词
multi-server queue; GI/D/; deterministic service time; heavy-traffic; Quality and Efficiency Driven (QED) or Halfin–Whitt regime; telephone call or contact centers; economies of scale; Gaussian random walk; Spitzer's identities;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a sequence of stationary GI/D/Nqueues indexed by N↑∞, with servers' utilization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$1 - \beta /\sqrt N ,\beta >0$$ \end{document}. For such queues we show that the scaled waiting times \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt N W_N $$ \end{document} converge to the (finite) supremum of a Gaussian random walk with drift −β. This further implies a corresponding limit for the number of customers in the system, an easily computable non-degenerate limiting delay probability in terms of Spitzer's random-walk identities, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt N $$ \end{document}rate of convergence for the latter limit. Our asymptotic regime is important for rational dimensioning of large-scale service systems, for example telephone- or internet-based, since it achieves, simultaneously, arbitrarily high service-quality and utilization-efficiency.
引用
收藏
页码:53 / 69
页数:16
相关论文
共 50 条
  • [1] Heavy traffic limits for queues with many deterministic servers
    Jelenkovic, P
    Mandelbaum, A
    Momcilovic, P
    [J]. QUEUEING SYSTEMS, 2004, 47 (1-2) : 53 - 69
  • [2] HEAVY-TRAFFIC LIMITS FOR QUEUES WITH MANY EXPONENTIAL SERVERS
    HALFIN, S
    WHITT, W
    [J]. OPERATIONS RESEARCH, 1981, 29 (03) : 567 - 588
  • [3] HEAVY-TRAFFIC LIMITS FOR NEARLY DETERMINISTIC QUEUES
    Sigman, Karl
    Whitt, Ward
    [J]. JOURNAL OF APPLIED PROBABILITY, 2011, 48 (03) : 657 - 678
  • [4] Heavy-traffic limits for nearly deterministic queues: stationary distributions
    Sigman, Karl
    Whitt, Ward
    [J]. QUEUEING SYSTEMS, 2011, 69 (02) : 145 - 173
  • [5] Heavy-traffic limits for nearly deterministic queues: stationary distributions
    Karl Sigman
    Ward Whitt
    [J]. Queueing Systems, 2011, 69 : 145 - 173
  • [6] Heavy-traffic limits for many-server queues with service interruptions
    Pang, Guodong
    Whitt, Ward
    [J]. QUEUEING SYSTEMS, 2009, 61 (2-3) : 167 - 202
  • [7] Heavy-traffic limits for many-server queues with service interruptions
    Guodong Pang
    Ward Whitt
    [J]. Queueing Systems, 2009, 61 : 167 - 202
  • [8] HEAVY-TRAFFIC LIMITS FOR WAITING TIMES IN MANY-SERVER QUEUES WITH ABANDONMENT
    Talreja, Rishi
    Whitt, Ward
    [J]. ANNALS OF APPLIED PROBABILITY, 2009, 19 (06): : 2137 - 2175
  • [9] Martingale proofs of many-server heavy-traffic limits for Markovian queues
    Pang, Guodong
    Talreja, Rishi
    Whitt, Ward
    [J]. PROBABILITY SURVEYS, 2007, 4 : 193 - 267
  • [10] ON MANY-SERVER QUEUES IN HEAVY TRAFFIC
    Puhalskii, Anatolii A.
    Reed, Josh E.
    [J]. ANNALS OF APPLIED PROBABILITY, 2010, 20 (01): : 129 - 195