Consider a sequence of stationary GI/D/Nqueues indexed by N↑∞, with servers' utilization \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$1 - \beta /\sqrt N ,\beta >0$$
\end{document}. For such queues we show that the scaled waiting times \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\sqrt N W_N $$
\end{document} converge to the (finite) supremum of a Gaussian random walk with drift −β. This further implies a corresponding limit for the number of customers in the system, an easily computable non-degenerate limiting delay probability in terms of Spitzer's random-walk identities, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\sqrt N $$
\end{document}rate of convergence for the latter limit. Our asymptotic regime is important for rational dimensioning of large-scale service systems, for example telephone- or internet-based, since it achieves, simultaneously, arbitrarily high service-quality and utilization-efficiency.