On the convergence of Homeier method and its extensions

被引:0
|
作者
K. Muhammed Saeed
R. Krishnendu
Santhosh George
Jidesh Padikkal
机构
[1] National Institute of Technology Karnataka,Department of Mathematical and Computational Sciences
来源
The Journal of Analysis | 2023年 / 31卷
关键词
Homeier method; Convergence order; Taylor expansion; Iterative methods; Banach space; 41A25; 49M15; 65D99;
D O I
暂无
中图分类号
学科分类号
摘要
A third-order Homeier method for solving equations in Banach space is studied. Using assumptions on the first and second derivatives, we obtained third-order convergence. Our technique does not involve Taylor series expansion and can be extended to similar higher-order methods. We have given two extensions of the method with orders five and six. Examples with radii of convergence and basins of attraction are provided.
引用
收藏
页码:645 / 656
页数:11
相关论文
共 50 条
  • [1] On the convergence of Homeier method and its extensions
    Saeed, K. Muhammed
    Krishnendu, R.
    George, Santhosh
    Padikkal, Jidesh
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (01): : 645 - 656
  • [2] On the Local Convergence of Modified Homeier-Like Method in Banach Spaces
    Panday B.
    Jaiswal J.P.
    [J]. Numerical Analysis and Applications, 2018, 11 (4) : 332 - 345
  • [3] Chaos and convergence of a family generalizing Homeier’s method with damping parameters
    Alicia Cordero
    Antonio Franques
    Juan R. Torregrosa
    [J]. Nonlinear Dynamics, 2016, 85 : 1939 - 1954
  • [4] Chaos and convergence of a family generalizing Homeier's method with damping parameters
    Cordero, Alicia
    Franques, Antonio
    Torregrosa, Juan R.
    [J]. NONLINEAR DYNAMICS, 2016, 85 (03) : 1939 - 1954
  • [5] Local Convergence of Traub's Method and Its Extensions
    Saeed, K. Muhammed
    Remesh, Krishnendu
    George, Santhosh
    Padikkal, Jidesh
    Argyros, Ioannis K.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [6] On a novel seventh convergence order method for solving nonlinear equations and its extensions
    Regmi, Samundra
    Argyros, Ioannis K.
    George, Santhosh
    Argyros, Christopher
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (11)
  • [7] CONVERGENCE SPACE EXTENSIONS
    KENT, DC
    REED, EE
    [J]. PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS, 1993, 704 : 202 - 213
  • [8] AFFINE INVARIANT CONVERGENCE THEOREMS FOR NEWTONS METHOD AND EXTENSIONS TO RELATED METHODS
    DEUFLHARD, P
    HEINDL, G
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) : 1 - 10
  • [9] Convergence of Newton's method under Vertgeim conditions: new extensions using restricted convergence domains
    Argyros, I. K.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Magrenan, A. A.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2017, 55 (07) : 1392 - 1406
  • [10] Convergence of Newton’s method under Vertgeim conditions: new extensions using restricted convergence domains
    I. K. Argyros
    J. A. Ezquerro
    M. A. Hernández-Verón
    Á. A. Magreñán
    [J]. Journal of Mathematical Chemistry, 2017, 55 : 1392 - 1406