A Sasakian structure \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{S}$$
\end{document}=(\xi,\eta,\Phi,g) on a manifold Mis called positiveif its basic first Chern class c1(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{F}$$
\end{document}ξ) can be represented by a positive (1,1)-form with respect to its transverse holomorphic CR-structure. We prove a theorem that says that every positive Sasakian structure can be deformed to a Sasakian structure whose metric has positive Ricci curvature. This provides us with a new technique for proving the existence of positive Ricci curvature metrics on certain odd dimensional manifolds. As an example we give a completely independent proof of a result of Sha and Yang that for every nonnegative integer kthe 5-manifolds k#(S2×S3) admits metrics of positive Ricci curvature.
机构:
Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USAUniv New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
Boyer, Charles P.
Macarini, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Cidade Univ, BR-21941909 Rio De Janeiro, BrazilUniv New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
Macarini, Leonardo
van Koert, Otto
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math, Bldg 27,Room 402 ,San 56-1, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Bldg 27,Room 402 ,San 56-1, Seoul 151747, South KoreaUniv New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA