On Positive Sasakian Geometry

被引:0
|
作者
Charles P. Boyer
Krzysztof Galicki
Michael Nakamaye
机构
[1] University of New Mexico,Department of Mathematics and Statistics
来源
Geometriae Dedicata | 2003年 / 101卷
关键词
Fano varieties; positive Ricci curvature; Sasakian geometry;
D O I
暂无
中图分类号
学科分类号
摘要
A Sasakian structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}$$ \end{document}=(\xi,\eta,\Phi,g) on a manifold Mis called positiveif its basic first Chern class c1(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document}ξ) can be represented by a positive (1,1)-form with respect to its transverse holomorphic CR-structure. We prove a theorem that says that every positive Sasakian structure can be deformed to a Sasakian structure whose metric has positive Ricci curvature. This provides us with a new technique for proving the existence of positive Ricci curvature metrics on certain odd dimensional manifolds. As an example we give a completely independent proof of a result of Sha and Yang that for every nonnegative integer kthe 5-manifolds k#(S2×S3) admits metrics of positive Ricci curvature.
引用
收藏
页码:93 / 102
页数:9
相关论文
共 50 条
  • [1] On positive Sasakian geometry
    Boyer, CP
    Galicki, K
    Nakamaye, A
    GEOMETRIAE DEDICATA, 2003, 101 (01) : 93 - 102
  • [2] Brieskorn manifolds, positive Sasakian geometry, and contact topology
    Boyer, Charles P.
    Macarini, Leonardo
    van Koert, Otto
    FORUM MATHEMATICUM, 2016, 28 (05) : 943 - 965
  • [3] Sasakian geometry, homotopy spheres and positive Ricci curvature
    Boyer, CP
    Galicki, K
    Nakamaye, M
    TOPOLOGY, 2003, 42 (05) : 981 - 1002
  • [4] Constructions in Sasakian geometry
    Charles P. Boyer
    Krzysztof Galicki
    Liviu Ornea
    Mathematische Zeitschrift, 2007, 257 : 907 - 924
  • [5] REDUCIBILITY IN SASAKIAN GEOMETRY
    Boyer, Charles P.
    Huang, Hongnian
    Legendre, Eveline
    Tonnesen-Friedman, Christina W.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) : 6825 - 6869
  • [6] Constructions in sasakian geometry
    Boyer, Charles P.
    Galicki, Krzysztof
    Ornea, Liviu
    MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (04) : 907 - 924
  • [7] Some Invariants in Sasakian Geometry
    Zhang, Xi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (15) : 3335 - 3367
  • [8] The Sasakian Geometry of the Heisenberg Group
    Boyer, Charles P.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2009, 52 (03): : 251 - 262
  • [9] On Sasakian-Einstein geometry
    Boyer, CP
    Galicki, K
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (07) : 873 - 909
  • [10] Sasakian geometry on sphere bundles
    Boyer, Charles P.
    Tonnesen-Friedman, Christina W.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 77