Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion

被引:0
|
作者
Ken-ichi Tsubota
Shigeo Wada
Hao Liu
机构
[1] Chiba University,Department of Mechanical Engineering
[2] Shanghai Jiao Tong University,Chiba University International Cooperative Research Center (SJTU
[3] Chiba University,CU ICRC)
[4] Osaka University,Department of Mechanical Science and Bioengineering
关键词
Computational biomechanics; Red blood cell; Elastic membrane; Viscous fluid; Tank-treading motion; Tumbling motion;
D O I
暂无
中图分类号
学科分类号
摘要
Direct numerical simulations of the mechanics of a single red blood cell (RBC) were performed by considering the nonuniform natural state of the elastic membrane. A RBC was modeled as an incompressible viscous fluid encapsulated by an elastic membrane. The in-plane shear and area dilatation deformations of the membrane were modeled by Skalak constitutive equation, while out-of-plane bending deformation was formulated by the spring model. The natural state of the membrane with respect to in-plane shear deformation was modeled as a sphere (α=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0$$\end{document}), biconcave disk shape (α=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =1$$\end{document}) and their intermediate shapes (0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <1$$\end{document}) with the nonuniformity parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, while the natural state with respect to out-of-plane bending deformation was modeled as a flat plane. According to the numerical simulations, at an experimentally measured in-plane shear modulus of 2.5×10-6N/m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.5\times 10^{-6}\,\hbox {N}/\hbox {m}$$\end{document} and an out-of-plane bending rigidity of 2.0×10-19N·m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.0\times 10^{-19}\,\hbox {N}\cdot \hbox {m}$$\end{document} of the cell membrane, the following results were obtained. (i) The RBC shape at equilibrium was biconcave discoid for α>0.22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0.22$$\end{document} and cupped otherwise; (ii) the experimentally measured fluid shear stress at the transition between tumbling and tank-treading motions under shear flow was reproduced for 0.05<α<0.34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.05<\alpha <0.34$$\end{document}; (iii) the elongation deformation of the RBC during tank-treading motion from the simulation was consistent with that from in vitro experiments, irrespective of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} value. Based on our RBC modeling, the three phenomena (i), (ii), and (iii) were mechanically consistent for 0.22<α<0.34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.22<\alpha <0.34$$\end{document}. The condition 0.05<α<0.22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.05<\alpha <0.22$$\end{document} precludes a biconcave discoid shape at equilibrium (i); however, it gives appropriate fluid shear stress at the motion transition under shear flow (ii), suggesting that a combined effect of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and the natural state with respect to out-of-plane bending deformation is necessary for understanding details of the RBC mechanics at equilibrium. Our numerical results demonstrate that moderate nonuniformity in a membrane’s natural state with respect to in-plane shear deformation plays a key role in RBC mechanics.
引用
收藏
页码:735 / 746
页数:11
相关论文
共 6 条