Brownian Motion Hitting Probabilities for General Two-Sided Square-Root Boundaries

被引:0
|
作者
Doncho S. Donchev
机构
[1] Sofia University,
关键词
Hitting probabilities; Two-sided boundaries; 60G12;
D O I
暂无
中图分类号
学科分类号
摘要
Let Bt be a Brownian motion, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(t) = a\sqrt{t+c}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(t) = b\sqrt{t+c}$\end{document}, t ≥ 0, a < b, c > 0, T > 0, and τ be the first hitting time of Bt either in f(t) or in g(t). We study the hitting probabilities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v(t,x)=P_{t,x}\left(\tau\leq T,\phantom{1}B_{\tau}=f\left(\tau\right)\right)$\end{document} for 0 < t < T and g(t) < x < f(t), where Pt,x is a probability such that Pt,x(Bt = x) = 1. We give general description of v(t,x) and find explicit series expansion for it in case of some special boundaries. The case of more general diffusion processes is discussed as well.
引用
收藏
页码:237 / 245
页数:8
相关论文
共 50 条