Reinforcement learning with model-based feedforward inputs for robotic table tennis

被引:0
|
作者
Hao Ma
Dieter Büchler
Bernhard Schölkopf
Michael Muehlebach
机构
[1] Max Planck Institute for Intelligent Systems,Learning and Dynamical Systems
[2] Max Planck Institute for Intelligent Systems,Empirical Inference
来源
Autonomous Robots | 2023年 / 47卷
关键词
Reinforcement learning; Iterative learning control; Supervised learning; Table tennis robot; Pneumatic artificial muscle; Soft robotics;
D O I
暂无
中图分类号
学科分类号
摘要
We rethink the traditional reinforcement learning approach, which is based on optimizing over feedback policies, and propose a new framework that optimizes over feedforward inputs instead. This not only mitigates the risk of destabilizing the system during training but also reduces the bulk of the learning to a supervised learning task. As a result, efficient and well-understood supervised learning techniques can be applied and are tuned using a validation data set. The labels are generated with a variant of iterative learning control, which also includes prior knowledge about the underlying dynamics. Our framework is applied for intercepting and returning ping-pong balls that are played to a four-degrees-of-freedom robotic arm in real-world experiments. The robot arm is driven by pneumatic artificial muscles, which makes the control and learning tasks challenging. We highlight the potential of our framework by comparing it to a reinforcement learning approach that optimizes over feedback policies. We find that our framework achieves a higher success rate for the returns (100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\%$$\end{document} vs. 96%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96\%$$\end{document}, on 107 consecutive trials, see https://youtu.be/kR9jowEH7PY) while requiring only about one tenth of the samples during training. We also find that our approach is able to deal with a variant of different incoming trajectories.
引用
收藏
页码:1387 / 1403
页数:16
相关论文
共 50 条
  • [1] Reinforcement learning with model-based feedforward inputs for robotic table tennis
    Ma, Hao
    Buechler, Dieter
    Schoelkopf, Bernhard
    Muehlebach, Michael
    [J]. AUTONOMOUS ROBOTS, 2023, 47 (08) : 1387 - 1403
  • [2] Robotic Table Tennis with Model-Free Reinforcement Learning
    Gao, Wenbo
    Graesser, Laura
    Choromanski, Krzysztof
    Song, Xingyou
    Lazic, Nevena
    Sanketi, Pannag
    Sindhwani, Vikas
    Jaitly, Navdeep
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5556 - 5563
  • [3] Sample-efficient Reinforcement Learning in Robotic Table Tennis
    Tebbe, Jonas
    Krauch, Lukas
    Gao, Yapeng
    Zell, Andreas
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 4171 - 4178
  • [4] Reinforcement Learning for VR Table Tennis
    Seah, H. S.
    Jiang, D. Q.
    Tandianus, B.
    Sui, Y. L.
    Wang, H.
    [J]. INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2024, 2024, 13164
  • [5] A learning approach to robotic table tennis
    Matsushima, M
    Hashimoto, T
    Takeuchi, M
    Miyazaki, F
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2005, 21 (04) : 767 - 771
  • [6] A Model-free Approach to Stroke Learning for Robotic Table Tennis
    Gao, Yapeng
    Tebbe, Jonas
    Zell, Andreas
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Industrial Insert Robotic Assembly Based on Model-based Meta-Reinforcement Learning
    Liu, Dong
    Zhang, Xiamin
    Du, Yu
    Gao, Dan
    Wang, Minghao
    Cong, Ming
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 1508 - 1512
  • [8] Learning strategies in table tennis using inverse reinforcement learning
    Muelling, Katharina
    Boularias, Abdeslam
    Mohler, Betty
    Schoelkopf, Bernhard
    Peters, Jan
    [J]. BIOLOGICAL CYBERNETICS, 2014, 108 (05) : 603 - 619
  • [9] Learning strategies in table tennis using inverse reinforcement learning
    Katharina Muelling
    Abdeslam Boularias
    Betty Mohler
    Bernhard Schölkopf
    Jan Peters
    [J]. Biological Cybernetics, 2014, 108 : 603 - 619
  • [10] A Learning Method for Returning Ball in Robotic Table Tennis
    Nakashima, Akira
    Takayanagi, Kota
    Hayakawa, Yoshikazu
    [J]. PROCESSING OF 2014 INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INFORMATION INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2014,