Residual finiteness growths of virtually special groups

被引:0
|
作者
Khalid Bou-Rabee
Mark F. Hagen
Priyam Patel
机构
[1] The City College of New York,Department of Mathematics
[2] University of Michigan,Department of Mathematics
[3] Purdue University,Department of Mathematics
来源
Mathematische Zeitschrift | 2015年 / 279卷
关键词
Residual finiteness growth; Special cube complex; Right-angled Artin group; Primary 20E26; Secondary 20F65; 20F36;
D O I
暂无
中图分类号
学科分类号
摘要
Let G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} be a virtually special group. Then the residual finiteness growth of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is at most linear. This result cannot be found by embedding G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} into a special linear group. Indeed, the special linear group SLk(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}_k(\mathbb {Z})$$\end{document}, for k>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k > 2$$\end{document}, has residual finiteness growth nk-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{k-1}$$\end{document}.
引用
收藏
页码:297 / 310
页数:13
相关论文
共 50 条
  • [1] Residual finiteness growths of virtually special groups
    Bou-Rabee, Khalid
    Hagen, Mark F.
    Patel, Priyam
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) : 297 - 310
  • [2] Full residual finiteness growths of nilpotent groups
    Khalid Bou-Rabee
    Daniel Studenmund
    Israel Journal of Mathematics, 2016, 214 : 209 - 233
  • [3] Full residual finiteness growths of nilpotent groups
    Bou-Rabee, Khalid
    Studenmund, Daniel
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 214 (01) : 209 - 233
  • [4] Residual finiteness growth in virtually abelian groups
    Dere, Jonas
    Matthys, Joren
    JOURNAL OF ALGEBRA, 2024, 657 : 482 - 513
  • [5] On the residual finiteness growths of particular hyperbolic manifold groups
    Patel, Priyam
    GEOMETRIAE DEDICATA, 2016, 185 (01) : 87 - 103
  • [6] On the residual finiteness growths of particular hyperbolic manifold groups
    Priyam Patel
    Geometriae Dedicata, 2016, 185 : 87 - 103
  • [7] RESIDUAL π-FINITENESS OF TUBULAR GROUPS
    Dudkin, F. A.
    Usikov, A. V.
    ALGEBRA AND LOGIC, 2024, 63 (01) : 28 - 41
  • [8] Generalized residual finiteness of groups
    Brody, Nic
    Jankiewicz, Kasia
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 583 - 592
  • [9] RESIDUAL FINITENESS OF SURFACE GROUPS
    HEMPEL, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 32 (01) : 323 - &
  • [10] Coxeter groups are virtually special
    Haglund, Frederic
    Wise, Daniel T.
    ADVANCES IN MATHEMATICS, 2010, 224 (05) : 1890 - 1903