Long-time tails of the velocity autocorrelation functions for the triangular periodic Lorentz gas

被引:0
|
作者
H. Matsuoka
R. F. Martin
机构
[1] Illinois State University,Department of Physics
来源
关键词
Periodic Lorentz gas; velocity autocorrelation functions; long-time tails; billiards; diffusion coefficients; ergodic theory; chaos;
D O I
暂无
中图分类号
学科分类号
摘要
We present numrical results on the velocity autocorrelation function (VACF)C(t)=<ν(t)·ν(0)> for the periodic Lorentz gas on a two-dimensional triangular lattice as a function of the radiusR of the hard disk scatterers on the lattice. Our results for the unbounded horizon case\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(0< R< \sqrt 3 /4)$$ \end{document} confirm 1/t decay of the VACF for long times (out to 100 times the mean free time between collisions) and provide strong support for the conjecture by Friedman and Martin that the 1/t decay is due to long free paths along which a moving particle does not scatter up to timet. Even after new sets of long free paths become available forR<1/4, we continue to find good agreement between numerical results and an analytically estimated 1/t decay. For the bounded horizon case\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\sqrt 3 /4 \leqslant R \leqslant 0.5)$$ \end{document}, our numerical VACFs decay exponentially, although it is difficult to discriminate among pure exponential decay, exponential decay with prefactor, and stretched exponential decay.
引用
收藏
页码:81 / 103
页数:22
相关论文
共 50 条