Desingularization of Vortex Rings and Shallow Water Vortices by a Semilinear Elliptic Problem

被引:0
|
作者
Sébastien de Valeriola
Jean Van Schaftingen
机构
[1] Université catholique de Louvain,Institut de Recherche en Mathématique et Physique (IRMP)
关键词
Vortex; Vorticity; Euler Equation; Vortex Ring; Vortex Core;
D O I
暂无
中图分类号
学科分类号
摘要
Steady vortices for the three-dimensional Euler equation for inviscid incompressible flows and for the shallow water equation are constructed and shown to tend asymptotically to singular vortex filaments. The construction is based on a study of solutions to the semilinear elliptic problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ \begin{aligned} -{\rm div} \left(\frac{\nabla u_{\varepsilon}}{b}\right) & = \frac{1}{\varepsilon^2} b f \left(u_{\varepsilon} - \log \tfrac{1}{\varepsilon} q \right) & & \text{ in } \; \Omega, \\u_\varepsilon & = 0 & & \text{ on } \; \partial \Omega, \end{aligned}\right.$$\end{document}for small values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon > 0}$$\end{document}.
引用
收藏
页码:409 / 450
页数:41
相关论文
共 50 条
  • [1] Desingularization of Vortex Rings and Shallow Water Vortices by a Semilinear Elliptic Problem
    de Valeriola, Sebastien
    Van Schaftingen, Jean
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (02) : 409 - 450
  • [2] ELLIPTIC VORTICES IN SHALLOW-WATER
    YOUNG, WR
    JOURNAL OF FLUID MECHANICS, 1986, 171 : 101 - 119
  • [3] Desingularization of vortex rings in 3 dimensional Euler flows
    Cao, Daomin
    Wan, Jie
    Zhan, Weicheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 270 : 1258 - 1297
  • [5] VORTICES AND VORTEX RINGS OF STRATIFIED FLUIDS
    YIH, CS
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (04) : 899 - 912
  • [6] On vortex rings around vortices: an optimal mechanism
    Antkowiak, Arnaud
    Brancher, Pierre
    JOURNAL OF FLUID MECHANICS, 2007, 578 : 295 - 304
  • [7] Internal structure of vortex rings and helical vortices
    Blanco-Rodriguez, Francisco J.
    Le Dizes, Stephane
    Selcuk, Can
    Delbende, Ivan
    Rossi, Maurice
    JOURNAL OF FLUID MECHANICS, 2015, 785 : 219 - 247
  • [8] Tripolar vortices and vortex chains in a shallow atmosphere
    Vranjes, J
    Stenflo, L
    Shukla, PK
    PHYSICS LETTERS A, 2000, 267 (2-3) : 184 - 187
  • [9] Evolution of single elliptic vortex rings
    Zhao Yao
    Shi Xungang
    Acta Mechanica Sinica, 1997, 13 (1) : 17 - 25
  • [10] EVOLUTION OF SINGLE ELLIPTIC VORTEX RINGS
    Zhao Yao Shi Xungang Department of Mechanics and Engineering SciencePeking UniversityThe State Key Laboratory for Turbulence ResearchBeijing China
    Acta Mechanica Sinica, 1997, 13 (01) : 17 - 25