共 50 条
Desingularization of Vortex Rings and Shallow Water Vortices by a Semilinear Elliptic Problem
被引:0
|作者:
Sébastien de Valeriola
Jean Van Schaftingen
机构:
[1] Université catholique de Louvain,Institut de Recherche en Mathématique et Physique (IRMP)
来源:
关键词:
Vortex;
Vorticity;
Euler Equation;
Vortex Ring;
Vortex Core;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Steady vortices for the three-dimensional Euler equation for inviscid incompressible flows and for the shallow water equation are constructed and shown to tend asymptotically to singular vortex filaments. The construction is based on a study of solutions to the semilinear elliptic problem
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left\{ \begin{aligned} -{\rm div} \left(\frac{\nabla u_{\varepsilon}}{b}\right) & = \frac{1}{\varepsilon^2} b f \left(u_{\varepsilon} - \log \tfrac{1}{\varepsilon} q \right) & & \text{ in } \; \Omega, \\u_\varepsilon & = 0 & & \text{ on } \; \partial \Omega, \end{aligned}\right.$$\end{document}for small values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varepsilon > 0}$$\end{document}.
引用
收藏
页码:409 / 450
页数:41
相关论文