A Semigroup of Theories and Its Lattice of Idempotent Elements

被引:0
|
作者
M. I. Bekenov
A. M. Nurakunov
机构
[1] Gumilyov Eurasian National University,Institute of Mathematics
[2] National Academy of Science of the Kyrgyz Republic,undefined
关键词
theory; complete theory; elementary equivalence; algebraic structure; direct product of structures; semigroup; lattice;
D O I
暂无
中图分类号
学科分类号
摘要
On the set of all first-order theories T(σ) of similarity type σ, a binary operation {·} is defined by the rule T · S = Th({A × B | A |= T and B |= S}) for any theories T,S ∈ T(σ). The structure 〈T(σ); ⋅〉 forms a commutative semigroup, which is called a semigroup of theories. We prove that a semigroup of theories is an ideal extension of a semigroup ST∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {S}_T^{\ast } $$\end{document} by a semigroup ST . The set of all idempotent elements of a semigroup of theories forms a complete lattice with respect to the partial order ≤ defined as T ≤ S iff T · S = S for all T,S ∈ T(σ). Also the set of all idempotent complete theories forms a complete lattice with respect to ≤, which is not necessarily a sublattice of the lattice of idempotent theories.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 50 条
  • [1] A Semigroup of Theories and Its Lattice of Idempotent Elements
    Bekenov, M. I.
    Nurakunov, A. M.
    ALGEBRA AND LOGIC, 2021, 60 (01) : 1 - 14
  • [2] A SEMIGROUP OF THEORIES AND ITS LATTICE OF IDEMPOTENT ELEMENTS
    Bekenov, M., I
    Nurakunov, A. M.
    ALGEBRA AND LOGIC, 2021,
  • [3] ON AN M-SEMIGROUP AND ITS SET OF IDEMPOTENT ELEMENTS
    LAKSHMANAN, L
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1990, 21 (05): : 423 - 433
  • [4] On Idempotent Elements of The Semigroup of Binary Relations
    Tavdgiridze G.
    Diasamidze Y.
    Givradze O.
    Journal of Mathematical Sciences, 2016, 216 (4) : 590 - 602
  • [5] On Idempotent Elements of Semigroup of Increasing Monotonous Mappings
    Kryukova, A. L.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2011, 11 (04): : 27 - 33
  • [6] Idempotent-Aided Factorizations of Regular Elements of a Semigroup
    Ciric, Miroslav
    Ignjatovic, Jelena
    Stanimirovic, Predrag S.
    MATHEMATICS, 2024, 12 (19)
  • [7] LATTICE OF IDEMPOTENT SEPARATING CONGRUENCES IN A P-REGULAR SEMIGROUP
    SEN, MK
    SETH, A
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 45 (03) : 483 - 488
  • [8] PERIODIC ELEMENTS OF THE FREE IDEMPOTENT GENERATED SEMIGROUP ON A BIORDERED SET
    Easdown, D.
    Sapir, M. V.
    Volkov, M. V.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2010, 20 (02) : 189 - 194
  • [9] On modular elements of the lattice of semigroup varieties
    Vernikov, Boris M.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2007, 48 (04): : 595 - 606
  • [10] Distributive elements of the lattice of semigroup varieties
    Vernikov B.M.
    Shaprynskii V.Y.
    Algebra and Logic, 2010, 49 (3) : 201 - 220