On semistable degenerations of Fano varieties

被引:0
|
作者
Konstantin Loginov
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences,Laboratory of Algebraic Geometry
[2] National Research University Higher School of Economics,Laboratory of AGHA
[3] Moscow Institute of Physics and Technology,undefined
来源
关键词
Fano variety; Semistable family; Degenerations; Dual complex; 14D06; 14J45;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a family of Fano varieties π:X→B∋o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :X \rightarrow B\ni o$$\end{document} over a curve germ with a smooth total space X. Assume that the generic fiber is smooth and the special fiber F=π-1(o)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F=\pi ^{-1}(o)$$\end{document} has simple normal crossings. Then F is called a semistable degeneration of Fano varieties. We show that the dual complex of F is a simplex of dimension 6dimF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {\,\char 054\,}\mathrm {dim}\, F$$\end{document}. Simplices of any admissible dimension can be realized for any dimension of the fiber. Using this result and the Minimal Model Program in dimension 3 we reproduce the classification of the semistable degenerations of del Pezzo surfaces obtained by Fujita. We also show that the maximal degeneration is unique and has trivial monodromy in dimension 63\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {\,\char 054\,}\,3$$\end{document}.
引用
收藏
页码:991 / 1005
页数:14
相关论文
共 50 条
  • [1] On semistable degenerations of Fano varieties
    Loginov, Konstantin
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (03) : 991 - 1005
  • [2] SMOOTHING OF SEMISTABLE FANO VARIETIES
    Shentu, Junchao
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2020, 57 (03) : 617 - 645
  • [3] On subvarieties of degenerations of Fano varieties
    Qu, Santai
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2024,
  • [4] A conjecture of Ax and degenerations of Fano varieties
    Kollar, Janos
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2007, 162 (01) : 235 - 251
  • [5] A conjecture of Ax and degenerations of Fano varieties
    János Kollár
    [J]. Israel Journal of Mathematics, 2007, 162 : 235 - 251
  • [6] Uniqueness of K-polystable degenerations of Fano varieties
    Blum, Harold
    Xu, Chenyang
    [J]. ANNALS OF MATHEMATICS, 2019, 190 (02) : 609 - 656
  • [7] Short Tops and Semistable Degenerations
    Davis, Ryan
    Doran, Charles
    Gewiss, Adam
    Novoseltsev, Andrey
    Skjorshammer, Dmitri
    Syryczuk, Alexa
    Whitcher, Ursula
    [J]. EXPERIMENTAL MATHEMATICS, 2014, 23 (04) : 351 - 362
  • [8] Torsors on semistable curves and degenerations
    V Balaji
    [J]. Proceedings - Mathematical Sciences, 2022, 132
  • [9] Torsors on semistable curves and degenerations
    Balaji, V
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (01):
  • [10] Conifold degenerations of Fano 3-folds as hypersurfaces in toric varieties
    Batyrev, Victor
    Kreuzer, Maximilian
    [J]. STRINGS, GAUGE FIELDS, AND THE GEOMETRY BEHIND: THE LEGACY OF MAXIMILIAN KREUZER, 2013, : 187 - 212