Relative Convex Hulls in Semi-Dynamic Arrangements

被引:0
|
作者
Mashhood Ishaque
Csaba D. Tóth
机构
[1] Tufts University,Department of Computer Science
[2] University of Calgary,Department of Mathematics
来源
Algorithmica | 2014年 / 68卷
关键词
Relative convex hull; Semi-dynamic data structure; Plane sweep;
D O I
暂无
中图分类号
学科分类号
摘要
We present a data structure for maintaining the geodesic hull of a set of points (sites) in the presence of pairwise noncrossing line segments (barriers) that subdivide a bounding box into simply connected faces. For m barriers and n sites, our data structure has O((m+n)logn) size. It supports a mixed sequence of O(m) barrier insertions and O(n) site deletions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O((m+n) \operatorname{polylog}(mn))$\end{document} total time, and answers analogues of standard convex hull queries in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\operatorname{polylog}(mn))$\end{document} time.
引用
收藏
页码:448 / 482
页数:34
相关论文
共 50 条
  • [1] Relative Convex Hulls in Semi-Dynamic Arrangements
    Ishaque, Mashhood
    Toth, Csaba D.
    ALGORITHMICA, 2014, 68 (02) : 448 - 482
  • [2] Relative Convex Hulls in Semi-dynamic Subdivisions
    Ishaque, Mashhood
    Toth, Csaba D.
    ALGORITHMS - ESA 2008, 2008, 5193 : 780 - +
  • [3] A COUNTEREXAMPLE TO A DYNAMIC ALGORITHM FOR CONVEX HULLS OF LINE ARRANGEMENTS
    BHATTACHARYA, B
    EVERETT, H
    TOUSSAINT, G
    PATTERN RECOGNITION LETTERS, 1991, 12 (03) : 145 - 147
  • [4] RELATIVE INTERIORS OF CONVEX HULLS
    BONNICE, WE
    REAY, JR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (01) : 246 - &
  • [5] Recursive Calculation of Relative Convex Hulls
    Klette, Gisela
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 2011, 6607 : 260 - 271
  • [6] Lifelong Localization in Semi-Dynamic Environment
    Zhu, Shifan
    Zhang, Xinyu
    Guo, Shichun
    Li, Jun
    Liu, Huaping
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 14389 - 14395
  • [7] CONVEX HULLS OF RANDOM WALKS, HYPERPLANE ARRANGEMENTS, AND WEYL CHAMBERS
    Kabluchko, Zakhar
    Vysotsky, Vladislav
    Zaporozhets, Dmitry
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (04) : 880 - 918
  • [8] A PIVOTING ALGORITHM FOR CONVEX HULLS AND VERTEX ENUMERATION OF ARRANGEMENTS AND POLYHEDRA
    AVIS, D
    FUKUDA, K
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (03) : 295 - 313
  • [9] Convex hulls of random walks, hyperplane arrangements, and Weyl chambers
    Zakhar Kabluchko
    Vladislav Vysotsky
    Dmitry Zaporozhets
    Geometric and Functional Analysis, 2017, 27 : 880 - 918
  • [10] Dynamic Convex Hulls for Simple Paths
    Brewer, Bruce
    Brodal, Gerth Stolting
    Wang, Haitao
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025,