Refined topological amplitudes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} flux compactification

被引:0
|
作者
Yu Nakayama
机构
[1] California Institute of Technology,
关键词
Flux compactifications; Topological Strings; Superstring Vacua;
D O I
10.1007/JHEP11(2010)117
中图分类号
学科分类号
摘要
We study the implication of refined topological string amplitudes in the supersymmetric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} flux compactification. They generate higher derivative couplings among the vector multiplets and graviphoton with generically non-holomorphic moduli dependence. For a particular term, we can compute them by assuming the geometric engineering. We claim that the Dijkgraaf-Vafa large N matrix model with the β-ensemble measure directly computes the higher derivative corrections to the supersymmetric effective action of the supersymmetric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} gauge theory.
引用
收藏
相关论文
共 50 条