Linear Fredholm and Volterra Partial Integral Equations in Anisotropic Lebesgue Spaces

被引:0
|
作者
Inozemtsev A.I. [1 ]
Barysheva I.V. [2 ]
机构
[1] Russain State Agrarian University – Moscow Timiryazev Agricultural Academy, 49, Timiryazevskaya St., Moscow
[2] Lipetsk State Pedagogical University, 42, Lenina St., Lipetsk
关键词
D O I
10.1007/s10958-023-06366-5
中图分类号
学科分类号
摘要
We obtain conditions for the existence and uniqueness of solutions to linear Fredholm and Volterra partial integral equations in anisotropic Lebesgue spaces. © 2023, Springer Nature Switzerland AG.
引用
收藏
页码:556 / 561
页数:5
相关论文
共 50 条
  • [1] Fredholm Equations with Multi-Dimensional Partial Integrals in Anisotropic Lebesgue Spaces
    Lyakhov L.N.
    Inozemtsev A.I.
    Journal of Mathematical Sciences, 2021, 255 (6) : 715 - 725
  • [2] VOLTERRA INTEGRAL EQUATIONS ON VARIABLE EXPONENT LEBESGUE SPACES
    Castillo, R. E.
    Ramos-Fernandez, J. C.
    Rojas, E. M.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2016, 28 (01) : 1 - 29
  • [3] Collocation method for linear and nonlinear Fredholm and Volterra integral equations
    Ebrahimi, Nehzat
    Rashidinia, Jalil
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 156 - 164
  • [4] Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations using Taylor Expansion Method
    Didgar, Mohsen
    Vahidi, Alireza
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (02): : 31 - 50
  • [5] On Volterra–Fredholm Equations with Partial Integrals
    A. S. Kalitvin
    Differential Equations, 2001, 37 : 1508 - 1510
  • [6] Fredholm and Volterra nonlinear possibilistic integral equations
    Gal, Sorin G.
    Iancu, Ionut T.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (01): : 105 - 113
  • [7] Collocation method for Fredholm and Volterra integral equations
    Rashidinia, Jalil
    Mahmoodi, Zahra
    KYBERNETES, 2013, 42 (03) : 400 - 412
  • [8] Modified HAM for solving linear system of Fredholm-Volterra Integral Equations
    Eshkuvatov, Z. K.
    Ismail, Sh
    Mamatova, H. X.
    Viscarra, D. S.
    Aloev, R. D.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 87 - 103
  • [9] On Volterra-Fredholm equations with partial integrals
    Kalitvin, AS
    DIFFERENTIAL EQUATIONS, 2001, 37 (10) : 1508 - 1510
  • [10] VOLTERRA AND FREDHOLM INTEGRAL EQUATIONS IN LOCALLY CONVEX SPACES, AND LEADER-TYPE CONTRACTIONS IN GAUGE SPACES
    Wlodarczyk, Kazimierz
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (02) : 141 - 214