Exceptional points of the eigenvalues of parameter-dependent Hamiltonian operators

被引:0
|
作者
Paolo Amore
Francisco M. Fernández
机构
[1] Universidad de Colima,Facultad de Ciencias, CUICBAS
[2] Blvd. 113 y 64 (S/N),INIFTA, División Química Teórica
[3] Sucursal 4,undefined
[4] Casilla de Correo 16,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the exceptional points of the eigenvalues of several parameter-dependent Hamiltonian operators of mathematical and physical interest. We show that the calculation is greatly facilitated by the application of the discriminant to the secular determinant. In this way, the problem reduces to finding the roots of a polynomial function of just one variable, the parameter in the Hamiltonian operator. As illustrative examples, we consider a particle in a one-dimensional box with a polynomial potential, the periodic Mathieu equation, the Stark effect in a polar rigid rotor and in a polar symmetric top.
引用
收藏
相关论文
共 50 条