Higher-Order Derivative of Self-Intersection Local Time for Fractional Brownian Motion

被引:0
|
作者
Qian Yu
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[2] School of Statistics,undefined
[3] East China Normal University,undefined
来源
关键词
Self-intersection local time; Fractional Brownian motion; Hölder continuity; 60G22; 60J55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the existence and Hölder continuity conditions for the k-th-order derivatives of self-intersection local time for d-dimensional fractional Brownian motion, where k=(k1,k2,…,kd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=(k_1,k_2,\ldots , k_d)$$\end{document}. Moreover, we show a limit theorem for the critical case with H=23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=\frac{2}{3}$$\end{document} and d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, which was conjectured by Jung and Markowsky [7].
引用
收藏
页码:1749 / 1774
页数:25
相关论文
共 50 条