Scalable hybrid implementation of the Schur complement method for multi-GPU systems

被引:0
|
作者
Sergey Kopysov
Igor Kuzmin
Nikita Nedozhogin
Alexander Novikov
Yulia Sagdeeva
机构
来源
关键词
Hybrid solver; Domain decomposition; Schur complement; Sparse matrix; Hybrid CPU/GPU platform; CUDA;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new hybrid solver based on the Schur complement method, in which computations are distributed between multiple CPUs and GPUs. In this solver, the Schur complement is formed either on CPUs (for small problems) or on GPUs (for large problems). The interface system is solved by a new multi-GPU algorithm implementing the conjugate gradient method with explicit preconditioning. Numerical simulations performed on a hybrid multi-core multi-GPU cluster demonstrate scalability and efficiency of the proposed algorithms.
引用
收藏
页码:81 / 88
页数:7
相关论文
共 50 条
  • [1] Scalable hybrid implementation of the Schur complement method for multi-GPU systems
    Kopysov, Sergey
    Kuzmin, Igor
    Nedozhogin, Nikita
    Novikov, Alexander
    Sagdeeva, Yulia
    [J]. JOURNAL OF SUPERCOMPUTING, 2014, 69 (01): : 81 - 88
  • [2] Hybrid Multi-GPU Solver Based on Schur Complement Method
    Kopysov, Sergey
    Kuzmin, Igor
    Nedozhogin, Nikita
    Novikov, Alexander
    Sagdeeva, Yulia
    [J]. PARALLEL COMPUTING TECHNOLOGIES (PACT 2013), 2013, 7979 : 65 - 79
  • [3] Scalable multi-GPU implementation of the MAGFLOW simulator
    Rustico, Eugenio
    Bilotta, Giuseppe
    Herault, Alexis
    Del Negro, Ciro
    Gallo, Giovanni
    [J]. ANNALS OF GEOPHYSICS, 2011, 54 (05) : 592 - 599
  • [4] Scalable Betweenness Centrality on Multi-GPU systems
    Bernaschi, Massimo
    Carbone, Giancarlo
    Vella, Flavio
    [J]. PROCEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS (CF'16), 2016, : 29 - 36
  • [5] Multi-GPU implementation of the lattice Boltzmann method
    Obrecht, Christian
    Kuznik, Frederic
    Tourancheau, Bernard
    Roux, Jean-Jacques
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (02) : 252 - 261
  • [6] MAPREDUCE IMPLEMENTATION WITH MULTI-GPU
    Chen, Yi
    Chen, Su
    Jiang, Hai
    [J]. INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY: PROCEEDINGS, 2012, : 21 - 25
  • [7] A Massively Parallel and Scalable Multi-GPU Material Point Method
    Wang, Xinlei
    Qiu, Yuxing
    Slattery, Stuart R.
    Fang, Yu
    Li, Minchen
    Zhu, Song-Chun
    Zhu, Yixin
    Tang, Min
    Manocha, Dinesh
    Jiang, Chenfanfu
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [8] Benchmarking multi-GPU applications on modern multi-GPU integrated systems
    Bernaschi, Massimo
    Agostini, Elena
    Rossetti, Davide
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (14):
  • [9] Scalable Framework for Mapping Streaming Applications onto Multi-GPU Systems
    Huynh, Huynh Phung
    Hagiescu, Andrei
    Wong, Weng-Fai
    Goh, Rick Siow Mong
    [J]. ACM SIGPLAN NOTICES, 2012, 47 (08) : 1 - 10
  • [10] Multi-GPU Implementation of LU Factorization
    Jia, Yulu
    Luszczek, Piotr
    Dongarra, Jack
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 106 - 115