Dielectric and microwave shielding properties of three-phase composites graphite nanoplatelets/carbonyl iron/epoxy resin

被引:0
|
作者
L. L. Vovchenko
O. V. Lozitsky
V. V. Oliynyk
V. V. Zagorodnii
T. A. Len
L. Y. Matzui
Yu. S. Milovanov
机构
[1] Taras Shevchenko National University of Kyiv,Department of Physics
[2] Taras Shevchenko National University of Kyiv,Institute of High Technologies
来源
Applied Nanoscience | 2020年 / 10卷
关键词
Graphite nanoplatelets; Carbonyl iron; Nanocomposites; Permittivity; Microwave shielding;
D O I
暂无
中图分类号
学科分类号
摘要
The electrical properties of three-phase composite materials (CMs) graphite nanoplatelets/carbonyl iron/epoxy resin (GNP/Fe/epoxy) with 30 wt% of Fe and (1–5) wt% of GNP were studied by measuring DC conductivity and AC impedance spectra in the frequency range up to 2 MHz. The microwave shielding properties were measured in the frequency range of electromagnetic radiation (EMR) 1–67 GHz. The Nyquist diagrams derived from measured impedance–frequency spectra for GNP/Fe/epoxy CMs were considered within the equivalent circuit model. The significant increase of permittivity was observed for three-phase CMs with the increase of GNP content compared to two-phase GNP/epoxy CMs. For example, the real part of permittivity ε′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon^{\prime}$$\end{document} = 700–300 and imaginary part ε″\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon^{\prime\prime}$$\end{document} = 4 × 105–300 for ternary 5 GNP/Fe/epoxy composite in the frequency range 1 kHz–2 MHz. The observed significant increase of AC conductivity for three-phase composites proved the synergetic role of Fe particles in dispersing of GNP filler in epoxy matrix and formation of micro-capacitor network (for low GNP content) as well as the conductive network for higher GNP content. The observed sufficient increase of EMR shielding (SET\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SE}}_{T}$$\end{document} in dB) beginning from 30–35 GHz for GNP content of 3–5 wt% correlates with DC electrical conductivity increase. The increase of the sample thickness d leads to the increase of shielding efficiency mainly due to the increase of EMR absorption SEA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SE}}_{A}$$\end{document} term.
引用
收藏
页码:4781 / 4790
页数:9
相关论文
共 50 条
  • [1] Dielectric and microwave shielding properties of three-phase composites graphite nanoplatelets/carbonyl iron/epoxy resin
    Vovchenko, L. L.
    Lozitsky, O., V
    Oliynyk, V. V.
    Zagorodnii, V. V.
    Len, T. A.
    Matzui, L. Y.
    Milovanov, Yu S.
    APPLIED NANOSCIENCE, 2020, 10 (12) : 4781 - 4790
  • [2] Preparation and Dielectric Properties of the Three-phase Composites of Graphite Oxide/Barium Titanate/Epoxy Resin
    Kou Si-Wang
    Yu Shu-Hui
    Sun Rong
    Yang Hai-Peng
    JOURNAL OF INORGANIC MATERIALS, 2014, 29 (01) : 71 - 76
  • [3] Synergetic Effect of Triglycine Sulfate and Graphite Nanoplatelets on Dielectric and Piezoelectric Properties of Epoxy Resin Composites
    Plyushch, Artyom
    Macutkevic, Jan
    Samulionis, Vytautas
    Banys, Juras
    Bychanok, Dzmitry
    Kuzhir, Polina
    Mathieu, Sandrine
    Fierro, Vanessa
    Celzard, Alain
    POLYMER COMPOSITES, 2019, 40 : E1181 - E1188
  • [4] Epoxy composites filled with graphite nanoplatelets modified by FeNi nanoparticles: Structure and microwave properties
    Yakovenko, Olena S.
    Matzui, Ludmila Yu.
    Syvolozhskyi, Oleksii A.
    Vovchenko, Ludmila L.
    Lazarenko, Oleksandra A.
    Ischenko, Olena V.
    Dyachenko, Alla G.
    Vakaliuk, Anna V.
    Oliynyk, Victor V.
    Zagorodnii, Volodymyr V.
    Bodnaruk, Andrii V.
    Kalita, Viktor M.
    Borovoy, Mykola O.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 283
  • [5] Dielectric properties of epoxy composites with mixed fillers including graphite nanoplatelets/BaTiO3
    Lozitsky, O. V.
    Vovchenko, L. L.
    Matzui, L. Y.
    Milovanov, Y. S.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2018, 671 (01) : 67 - 77
  • [6] Epoxy resin addition on the microstructure, thermal stability and microwave absorption properties of core-shell carbonyl iron@epoxy composites
    Guo, Xinlu
    Yao, Zhengjun
    Lin, Haiyan
    Zhou, Jintang
    Zuo, Yuxin
    Xu, Xiangyu
    Wei, Bo
    Chen, Wenjing
    Qian, Kun
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 485 : 244 - 250
  • [7] Influence of shape anisotropy on microwave complex permeability in carbonyl iron flakes/epoxy resin composites
    温福昇
    乔亮
    周栋
    左文亮
    伊海波
    李发伸
    Chinese Physics B, 2008, (06) : 2263 - 2267
  • [8] Influence of shape anisotropy on microwave complex permeability in carbonyl iron flakes/epoxy resin composites
    Key Laboratory of Magnetism and Magnetic Materials, Lanzhou University, Ministry of Education, Lanzhou 730000, China
    Chin. Phys., 2008, 6 (2263-2267):
  • [9] Influence of shape anisotropy on microwave complex permeability in carbonyl iron flakes/epoxy resin composites
    Wen Fu-Sheng
    Qiao Liang
    Zhou Dong
    Zuo Wen-Liang
    Yi Hai-Bo
    Li Fa-Shen
    CHINESE PHYSICS B, 2008, 17 (06) : 2263 - 2267
  • [10] Effect of Carbon Black on Electrical Property of Graphite Nanoplatelets/Epoxy Resin Composites
    Fan, Zhuangjun
    Zheng, Chao
    Wei, Tong
    Zhang, Yicheng
    Luo, Guilian
    POLYMER ENGINEERING AND SCIENCE, 2009, 49 (10): : 2041 - 2045