Power series rings and projectivity

被引:0
|
作者
Ragnar-Olaf Buchweitz
Hubert Flenner
机构
[1] University of Toronto,Dept. of Math.
[2] Fakultät für Mathematik der Ruhr-Universität,undefined
来源
manuscripta mathematica | 2006年 / 119卷
关键词
Power Series; Number Theory; Algebraic Geometry; Topological Group; Local Ring;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a formal power series ring A[[X]] over a noetherian ring A is not a projective module unless A is artinian. However, if (A,[inline-graphic not available: see fulltext]) is any local ring, then A[[X]] behaves like a projective module in the sense that ExtpA(A[[X]], M)=0 for all [inline-graphic not available: see fulltext]-adically complete A-modules. The latter result is shown more generally for any flat A-module B instead of A[[X]]. We apply the results to the (analytic) Hochschild cohomology over complete noetherian rings.
引用
下载
收藏
页码:107 / 114
页数:7
相关论文
共 50 条