On the structure of p-adic subanalytic functions and sets

被引:0
|
作者
A. Mylnikov
机构
[1] Purdue University,
关键词
Disjoint Union; Ambient Space; Convergent Power Series; Multiplicative Subgroup; Diophantine Problem;
D O I
10.1007/s10958-012-1043-5
中图分类号
学科分类号
摘要
We prove a p-adic version of the Lion–Rolin preparation theorem. As a consequence, we obtain a cell decomposition theorem, which can be viewed as an extension of Denef’s cell decomposition theorem to the p-adic analytic case. Using these theorems, we give shorter and more explicit proofs of some of the results by Denef and van den Dries on p-adic subanalytic sets.
引用
收藏
页码:927 / 950
页数:23
相关论文
共 50 条
  • [1] P-ADIC AND REAL SUBANALYTIC SETS
    DENEF, J
    VANDENDRIES, L
    [J]. ANNALS OF MATHEMATICS, 1988, 128 (01) : 79 - 138
  • [2] SMOOTH POINTS OF P-ADIC SUBANALYTIC SETS
    ROBINSON, Z
    [J]. MANUSCRIPTA MATHEMATICA, 1993, 80 (01) : 45 - 71
  • [3] One-dimensional p-adic subanalytic sets
    van den Dries, L
    Haskell, D
    Macpherson, D
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 : 1 - 20
  • [4] Flatness and smooth points of p-adic subanalytic sets
    Robinson, Z
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1997, 88 (2-3) : 217 - 225
  • [5] REDUCTION MODULO P(N) OF P-ADIC SUBANALYTIC SETS
    VEYS, W
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 112 : 483 - 486
  • [6] LIPSCHITZ CONTINUITY PROPERTIES FOR p-ADIC SEMI-ALGEBRAIC AND SUBANALYTIC FUNCTIONS
    Cluckers, Raf
    Comte, Georges
    Loeser, Francois
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) : 68 - 87
  • [7] On limit sets of contractive functions on p-adic field
    Mukhamedov, Farrukh
    Khakimov, Otabek
    [J]. INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS (ICMSS2016), 2016, 1739
  • [8] P-ADIC INTERPOLATION AND CONTINUATION OF P-ADIC FUNCTIONS
    HA, HK
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 1013 : 252 - 265
  • [9] p-adic quotient sets
    Garcia, Stephan Ramon
    Hong, Yu Xuan
    Luca, Florian
    Pinsker, Elena
    Sanna, Carlo
    Schechter, Evan
    Starr, Adam
    [J]. ACTA ARITHMETICA, 2017, 179 (02) : 163 - 184
  • [10] ON THE STRUCTURE OF SEMIALGEBRAIC SETS OVER P-ADIC FIELDS
    SCOWCROFT, P
    VANDENDRIES, L
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1988, 53 (04) : 1138 - 1164