Strong tree properties, Kurepa trees, and guessing models

被引:0
|
作者
Chris Lambie-Hanson
Šárka Stejskalová
机构
[1] Czech Academy of Sciences,Institute of Mathematics
[2] Charles University,Department of Logic
来源
关键词
Generalized tree properties; Guessing models; Two-cardinal combinatorics; Kurepa trees; Square principles; Mitchell forcing; 03E35; 03E55; 03E05;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the generalized tree properties and guessing model properties introduced by Weiß and Viale, as well as natural weakenings thereof, studying the relationships among these properties and between these properties and other prominent combinatorial principles. We introduce a weakening of Viale and Weiß’s Guessing Model Property, which we call the Almost Guessing Property, and prove that it provides an alternate formulation of the slender tree property in the same way that the Guessing Model Property provides and alternate formulation of the ineffable slender tree property. We show that instances of the Almost Guessing Property have sufficient strength to imply, for example, failures of square or the nonexistence of weak Kurepa trees. We show that these instances of the Almost Guessing Property hold in the Mitchell model starting from a strongly compact cardinal and prove a number of other consistency results showing that certain implications between the principles under consideration are in general not reversible. In the process, we provide a new answer to a question of Viale by constructing a model in which, for all regular θ≥ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \ge \omega _2$$\end{document}, there are stationarily many ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{document}-guessing models M∈Pω2H(θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M \in {\mathscr {P}}_{\omega _2} H(\theta )$$\end{document} that are not ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1$$\end{document}-guessing models.
引用
收藏
页码:111 / 148
页数:37
相关论文
共 50 条
  • [1] Strong tree properties, Kurepa trees, and guessing models
    Lambie-Hanson, Chris
    Stejskalova, Sarka
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 203 (01): : 111 - 148
  • [2] Aronszajn and Kurepa trees
    James Cummings
    [J]. Archive for Mathematical Logic, 2018, 57 : 83 - 90
  • [3] Aronszajn and Kurepa trees
    Cummings, James
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2018, 57 (1-2) : 83 - 90
  • [4] ALMOST SOUSLIN KUREPA TREES
    Golshani, Mohammad
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1821 - 1826
  • [5] KUREPA TREES AND NAMBA FORCING
    Koenig, Bernhard
    Yoshinobu, Yasuo
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2012, 77 (04) : 1281 - 1290
  • [6] A REMARK ON KUREPA TOPOLOGY ON ARONSZAJN TREES
    ALSTER, K
    POL, R
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1992, 18 (03): : 409 - 415
  • [7] On the spectra of cardinalities of branches of Kurepa trees
    Márk Poór
    [J]. Archive for Mathematical Logic, 2021, 60 : 927 - 966
  • [8] KUREPA TREES AND THE FAILURE OF THE GALVIN PROPERTY
    Benhamou, Tom
    Garti, Shimon
    Shelah, Saharon
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (03) : 1301 - 1309
  • [9] THE DIFFERENCES BETWEEN KUREPA TREES AND JECH-KUNEN TREES
    JIN, RL
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 1993, 32 (05) : 369 - 379
  • [10] On the spectra of cardinalities of branches of Kurepa trees
    Poor, Mark
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2021, 60 (7-8) : 927 - 966