Experimental analysis and safety assessment of thermal runaway behavior in lithium iron phosphate batteries under mechanical abuse

被引:1
|
作者
Chai, Zhixiong [1 ]
Li, Junqiu [1 ]
Liu, Ziming [1 ]
Liu, Zhengnan [1 ]
Jin, Xin [2 ]
机构
[1] Beijing Inst Technol, Natl Engn Res Ctr Elect Vehicles, Beijing 100081, Peoples R China
[2] Beijing Inst Space Launch Technol, Beijing 100076, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Mechanical abuse; Internal short circuit; Thermal runaway; Safety assessment; Regression models; ION BATTERY; SHORT-CIRCUITS; MODEL;
D O I
10.1038/s41598-024-58891-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mechanical abuse can lead to internal short circuits and thermal runaway in lithium-ion batteries, causing severe harm. Therefore, this paper systematically investigates the thermal runaway behavior and safety assessment of lithium iron phosphate (LFP) batteries under mechanical abuse through experimental research. Mechanical abuse experiments are conducted under different conditions and battery state of charge (SOC), capturing force, voltage, and temperature responses during failure. Subsequently, characteristic parameters of thermal runaway behavior are extracted. Further, mechanical abuse conditions are quantified, and the relationship between experimental conditions and battery characteristic parameters is analyzed. Finally, regression models for battery safety boundaries and the degree of thermal runaway risk are established. The research results indicate that the extracted characteristic parameters effectively reflect internal short circuit (ISC) and thermal runaway behaviors, and the regression models provide a robust description of the battery's safety boundaries and thermal runaway risk degree. This work sheds light on understanding thermal runaway behavior and safety assessment methods for lithium-ion cells under mechanical abuse.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Comprehensive analysis of thermal runaway and rupture of lithium-ion batteries under mechanical abuse conditions
    Chen, Haodong
    Kalamaras, Evangelos
    Abaza, Ahmed
    Tripathy, Yashraj
    Page, Jason
    Barai, Anup
    APPLIED ENERGY, 2023, 349
  • [2] Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse
    Zhou, Zhizuan
    Li, Maoyu
    Zhou, Xiaodong
    Li, Lun
    Ju, Xiaoyu
    Yang, Lizhong
    RENEWABLE ENERGY, 2024, 220
  • [3] Chemical Analysis of the Cause of Thermal Runaway of Lithium-Ion Iron Phosphate Batteries
    Liu, Wei
    Zhao, Fusheng
    Liu, Shu
    Mi, Wenzhong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (06)
  • [4] Thermal Runaway Behavior of Lithium Iron Phosphate Battery During Penetration
    Zonghou Huang
    Huang Li
    Wenxin Mei
    Chunpeng Zhao
    Jinhua Sun
    Qingsong Wang
    Fire Technology, 2020, 56 : 2405 - 2426
  • [5] Thermal Runaway Behavior of Lithium Iron Phosphate Battery During Penetration
    Huang, Zonghou
    Li, Huang
    Mei, Wenxin
    Zhao, Chunpeng
    Sun, Jinhua
    Wang, Qingsong
    FIRE TECHNOLOGY, 2020, 56 (06) : 2405 - 2426
  • [6] Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse
    Li, Honggang
    Zhou, Dian
    Zhang, Meihe
    Liu, Binghe
    Zhang, Chao
    ENERGY, 2023, 263
  • [7] Revealing the Thermal Runaway Behavior of Lithium Iron Phosphate Power Batteries at Different States of Charge and Operating Environment
    Li, Tianyi
    Jiao, Yinghou
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (10):
  • [9] Mechanical Abuse Simulation and Effect of Graphene Oxides on Thermal Runaway of Lithium ion Batteries
    Dai, Cuiying
    Zhu, Xiaoxue
    Pan, Junan
    Liao, Xiangbiao
    Pan, Yong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (04): : 3363 - 3374
  • [10] A comprehensive investigation of thermal runaway critical temperature and energy for lithium iron phosphate batteries
    Song, Laifeng
    Wang, Shuping
    Jia, Zhuangzhuang
    Li, Changhao
    Li, Yuxuan
    Cheng, Yifeng
    Zhang, Yue
    Yu, Yin
    Jin, Kaiqiang
    Duan, Qiangling
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2024, 86