Global quasi-Mittag–Leffler stability of distributed-order BLDCM system

被引:0
|
作者
Xiaoyun Zhong
Mohammad Shahidehpour
Yanli Zou
机构
[1] Guangxi Normal University,College of Electronic Engineering
[2] Illinois Institute of Technology,The Galvin Center for Electricity Innovation
来源
Nonlinear Dynamics | 2022年 / 108卷
关键词
Distributed-order BLDCM system; Global quasi-Mittag–Leffler stability; Control of chaos;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the issues of the global quasi-Mittag–Leffler stability of distributed-order BLDCM chaotic system. Based on proper Lyapunov function and applying the properties of distributed-order derivative, some new sufficient and necessary conditions are derived for the considered distributed-order system, which improve the earlier results and can derive some new criteria. The methods may be applied to posing the existence of sufficient and necessary conditions for the chaos control of Chen system, Lu system and so on. Suitable examples are presented to illustrate the effectiveness of the suggested scheme.
引用
收藏
页码:2405 / 2416
页数:11
相关论文
共 50 条
  • [1] Global quasi-Mittag-Leffler stability of distributed-order BLDCM system
    Zhong, Xiaoyun
    Shahidehpour, Mohammad
    Zou, Yanli
    [J]. NONLINEAR DYNAMICS, 2022, 108 (03) : 2405 - 2416
  • [2] Global Mittag–Leffler stability of complex valued fractional-order neural network with discrete and distributed delays
    Tyagi S.
    Abbas S.
    Hafayed M.
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (3): : 485 - 505
  • [3] Global Mittag-Leffler stability of coupled system of fractional-order differential equations on network
    Li, Hong-Li
    Jiang, Yao-Lin
    Wang, Zuolei
    Zhang, Long
    Teng, Zhidong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 269 - 277
  • [4] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    [J]. NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [5] Global Mittag-Leffler stability for a coupled system of fractional-order differential equations on network with feedback controls
    Li, Hong-Li
    Hu, Cheng
    Jiang, Yao-Lin
    Zhang, Long
    Teng, Zhidong
    [J]. NEUROCOMPUTING, 2016, 214 : 233 - 241
  • [6] Generalized Mittag-Leffler Stability of Hilfer Fractional Order Nonlinear Dynamic System
    Wang, Guotao
    Qin, Jianfang
    Dong, Huanhe
    Guan, Tingting
    [J]. MATHEMATICS, 2019, 7 (06)
  • [7] Stability Analysis on Nabla Discrete Distributed-Order Dynamical System
    Wu, Xiang
    Yang, Xujun
    Song, Qiankun
    Chen, Xiaofeng
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (08)
  • [8] On Mittag-Leffler Stability of Fractional Order Difference Systems
    Wyrwas, Malgorzata
    Mozyrska, Dorota
    [J]. ADVANCES IN MODELLING AND CONTROL OF NON-INTEGER ORDER SYSTEMS, 2015, 320 : 209 - 220
  • [9] Practical Mittag-Leffler stability of quasi-one-sided Lipschitz fractional order systems
    Basdouri, Imed
    Kasmi, Souad
    Lerbet, Jean
    [J]. ARCHIVES OF CONTROL SCIENCES, 2023, 33 (01) : 55 - 70
  • [10] LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses
    Wu, Huaiqin
    Zhang, Xinxin
    Xue, Shunhui
    Wang, Lifei
    Wang, Yu
    [J]. NEUROCOMPUTING, 2016, 193 : 148 - 154