The uncertainty of crop yield projections is reduced by improved temperature response functions

被引:240
|
作者
Wang, Enli [1 ]
Martre, Pierre [2 ]
Zhao, Zhigan [1 ,3 ]
Ewert, Frank [4 ,5 ]
Maiorano, Andrea [2 ,42 ]
Roetter, Reimund P. [6 ,7 ,32 ]
Kimball, Bruce A. [8 ]
Ottman, Michael J. [9 ]
Wall, Gerard W. [8 ]
White, Jeffrey W. [8 ]
Reynolds, Matthew P. [10 ]
Alderman, Phillip D. [10 ,43 ]
Aggarwal, Pramod K. [11 ]
Anothai, Jakarat [12 ,44 ]
Basso, Bruno [13 ,14 ]
Biernath, Christian [15 ]
Cammarano, Davide [16 ,45 ]
Challinor, Andrew J. [17 ,18 ]
De Sanctis, Giacomo [19 ]
Doltra, Jordi [20 ]
Fereres, Elias [21 ,22 ]
Garcia-Vila, Margarita [21 ,22 ]
Gayler, Sebastian [23 ]
Hoogenboom, Gerrit [12 ,46 ]
Hunt, Leslie A. [24 ]
Izaurralde, Roberto C. [25 ,26 ]
Jabloun, Mohamed [27 ]
Jones, Curtis D.
Kersebaum, Kurt C. [5 ]
Koehler, Ann-Kristin [17 ]
Liu, Leilei [28 ]
Mueller, Christoph [29 ]
Kumar, Soora Naresh [30 ]
Nendel, Claas [5 ]
O'Leary, Garry [31 ]
Olesen, Jorgen E. [27 ]
Palosuo, Taru [32 ]
Priesack, Eckart [15 ]
Rezaei, Ehsan Eyshi [4 ]
Ripoche, Dominique [33 ]
Ruane, Alex C. [34 ]
Semenov, Mikhail A. [35 ]
Shcherbak, Iurii [13 ,14 ]
Stockle, Claudio [36 ]
Stratonovitch, Pierre [35 ]
Streck, Thilo [23 ]
Supit, Iwan [37 ,38 ,47 ]
Tao, Fulu [32 ,39 ]
Thorburn, Peter [40 ]
Waha, Katharina [29 ]
机构
[1] CSIRO, Agr & Food, Canberra, ACT 2601, Australia
[2] Montpellier SupAgro, INRA, UMR LEPSE, 2 Pl Viala, F-34060 Montpellier, France
[3] China Agr Univ, Coll Agron & Biotechnol, Beijing 100193, Peoples R China
[4] Univ Bonn, Inst Crop Sci & Resource Conservat INRES, D-53115 Bonn, Germany
[5] Leibniz Ctr Agr Landscape Res, Inst Landscape Syst Anal, D-15374 Muncheberg, Germany
[6] Univ Gottingen, Dept Crop Sci, Trop Plant Prod & Agr Syst Modelling TROPAGS, D-37077 Gottingen, Germany
[7] Univ Gottingen, Ctr Biodivers & Sustainable Land Use CBL, Busgenweg 1, D-37077 Gottingen, Germany
[8] USDA, Agr Res Serv, US Arid Land Agr Res Ctr, Maricopa, AZ 85138 USA
[9] Univ Arizona, Sch Plant Sci, Tucson, AZ 85721 USA
[10] Int Maize & Wheat Improvement Ctr CIMMYT, Global Wheat Program, Mexico City, DF, Mexico
[11] Int Maize & Wheat Improvement Ctr CIMMYT, Borlaug Inst South Asia, Agr & Food Secur, CGIAR Res Program Climate Change, New Delhi 110012, India
[12] Washington State Univ, AgWeatherNet Program, Prosser, WA 99350 USA
[13] Michigan State Univ, Dept Earth & Environm Sci, E Lansing, MI 48823 USA
[14] Michigan State Univ, WK Kellogg Biol Stn, E Lansing, MI 48823 USA
[15] Helmholtz Zentrum Munchen German Res Ctr Environm, Inst Biochem Plant Pathol, D-85764 Neuherberg, Germany
[16] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL 32611 USA
[17] Univ Leeds, Sch Earth & Environm, Insti Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England
[18] CGIAR Res Program Climate Change Agr & Food Secur, Km 17,Recta Cali Palmira Apartado Aereo, Cali, Colombia
[19] European Food Safety Author EFSA, GMO Unit, Via Carlo Magno,1A, I-43126 Parma, Italy
[20] Cantabrian Agr Res & Training Ctr CIFA, Muriedas 39600, Spain
[21] Univ Cordoba, Dep Agron, Apartado 3048, Cordoba 14080, Spain
[22] CSIC, IAS, Cordoba 14080, Spain
[23] Univ Hohenheim, Inst Soil Sci & Land Evaluat, D-70599 Stuttgart, Germany
[24] Univ Guelph, Dept Plant Agr, Guelph, ON N1G 2W1, Canada
[25] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[26] Texas A&M Univ, Texas A&M AgriLife Res & Extens Ctr, Temple, TX 76504 USA
[27] Aarhus Univ, Dept Agroecol, DK-8830 Tjele, Denmark
[28] Nanjing Agr Univ, Jiangsu Collaborat Innovat Ctr Modern Crop Prod, Jiangsu Key Lab Informat Agr,Natl Engn & Technol, Minist Agr,Key Lab Crop System Anal & Decicion Ma, Nanjing 210095, Jiangsu, Peoples R China
[29] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[30] Indian Agr Res Inst, Ctr Environm Sci & Climate Resilient Agr, New Delhi 110012, India
[31] Dept Econ Dev Landscape & Water Sci Jobs Transpor, Horsham, Vic 3400, Australia
[32] Nat Resources Inst Finland Luke, Latokartanonkaari 9, Helsinki 00790, Finland
[33] INRA, US1116 AgroClim, F-84914 Avignon, France
[34] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[35] Rothamsted Res, Computat & Syst Biol Dept, Harpenden AL5 2JQ, Herts, England
[36] Washington State Univ, Biol Syst Engn, Pullman, WA 99164 USA
[37] Wageningen Univ, PPS, Wageningen, Netherlands
[38] Wageningen Univ, WSG & CALM, NL-6700AA Wageningen, Netherlands
[39] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[40] CSIRO, Agr & Food, St Lucia, Qld 4067, Australia
[41] INRA, UMR 1248, Agrosyst Dev Terr AGIR, F-31326 Castanet Tolosan, France
[42] European Commiss Joint Res Ctr, I-21027 Ispra, Italy
[43] Oklahoma State Univ, Dept Plant & Soil Sci, Stillwater, OK 74078 USA
[44] Prince Songkla Univ, Fac Nat Resources, Dept Plant Sci, Hat Yai 90112, Thailand
[45] James Hutton Inst, Dundee DD2 5DA, Scotland
[46] Univ Florida, Inst Sustainable Food Syst, Gainesville, FL 32611 USA
[47] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4001, Australia
基金
中国国家自然科学基金;
关键词
WHEAT YIELD; PHENOLOGICAL DEVELOPMENT; PROTEIN-COMPOSITION; LEAF APPEARANCE; WINTER-WHEAT; SOWING DATES; SPRING WHEAT; MODEL; SIMULATION; WATER;
D O I
10.1038/nplants.2017.102
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for > 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 degrees C to 33 degrees C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% ( 42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Erratum: The uncertainty of crop yield projections is reduced by improved temperature response functions
    Enli Wang
    Pierre Martre
    Zhigan Zhao
    Frank Ewert
    Andrea Maiorano
    Reimund P. Rötter
    Bruce A. Kimball
    Michael J. Ottman
    Gerard W. Wall
    Jeffrey W. White
    Matthew P. Reynolds
    Phillip D. Alderman
    Pramod K. Aggarwal
    Jakarat Anothai
    Bruno Basso
    Christian Biernath
    Davide Cammarano
    Andrew J. Challinor
    Giacomo De Sanctis
    Jordi Doltra
    Elias Fereres
    Margarita Garcia-Vila
    Sebastian Gayler
    Gerrit Hoogenboom
    Leslie A. Hunt
    Roberto C. Izaurralde
    Mohamed Jabloun
    Curtis D. Jones
    Kurt C. Kersebaum
    Ann-Kristin Koehler
    Leilei Liu
    Christoph Müller
    Soora Naresh Kumar
    Claas Nendel
    Garry O’Leary
    Jørgen E. Olesen
    Taru Palosuo
    Eckart Priesack
    Ehsan Eyshi Rezaei
    Dominique Ripoche
    Alex C. Ruane
    Mikhail A. Semenov
    Iurii Shcherbak
    Claudio Stöckle
    Pierre Stratonovitch
    Thilo Streck
    Iwan Supit
    Fulu Tao
    Peter Thorburn
    Katharina Waha
    [J]. Nature Plants, 3
  • [2] Author Correction: The uncertainty of crop yield projections is reduced by improved temperature response functions
    Enli Wang
    Pierre Martre
    Zhigan Zhao
    Frank Ewert
    Andrea Maiorano
    Reimund P. Rötter
    Bruce A. Kimball
    Michael J. Ottman
    Gerard W. Wall
    Jeffrey W. White
    Matthew P. Reynolds
    Phillip D. Alderman
    Pramod K. Aggarwal
    Jakarat Anothai
    Bruno Basso
    Christian Biernath
    Davide Cammarano
    Andrew J. Challinor
    Giacomo De Sanctis
    Jordi Doltra
    Benjamin Dumont
    Elias Fereres
    Margarita Garcia-Vila
    Sebastian Gayler
    Gerrit Hoogenboom
    Leslie A. Hunt
    Roberto C. Izaurralde
    Mohamed Jabloun
    Curtis D. Jones
    Kurt C. Kersebaum
    Ann-Kristin Koehler
    Leilei Liu
    Christoph Müller
    Soora Naresh Kumar
    Claas Nendel
    Garry O’Leary
    Jørgen E. Olesen
    Taru Palosuo
    Eckart Priesack
    Ehsan Eyshi Rezaei
    Dominique Ripoche
    Alex C. Ruane
    Mikhail A. Semenov
    Iurii Shcherbak
    Claudio Stöckle
    Pierre Stratonovitch
    Thilo Streck
    Iwan Supit
    Fulu Tao
    Peter Thorburn
    [J]. Nature Plants, 2017, 3 : 833 - 833
  • [3] The uncertainty of crop yield projections is reduced by improved temperature response functions (vol 3, pg 17102, 2017)
    Wang, Enli
    Martre, Pierre
    Zhao, Zhigan
    Ewert, Frank
    Maiorano, Andrea
    Rotter, Reimund P.
    Kimball, Bruce A.
    Ottman, Michael J.
    Wall, Gerard W.
    White, Jeffrey W.
    Reynolds, Matthew P.
    Alderman, Phillip D.
    Aggarwal, Pramod K.
    Anothai, Jakarat
    Basso, Bruno
    Biernath, Christian
    Cammarano, Davide
    Challinor, Andrew J.
    De Sanctis, Giacomo
    Doltra, Jordi
    Dumont, Benjamin
    Fereres, Elias
    Garcia-Vila, Margarita
    Gayler, Sebastian
    Hoogenboom, Gerrit
    Hunt, Leslie A.
    Izaurralde, Roberto C.
    Jabloun, Mohamed
    Jones, Curtis D.
    Kersebaum, Kurt C.
    Koehler, Ann-Kristin
    Liu, Leilei
    Mueller, Christoph
    Kumar, Soora Naresh
    Nendel, Claas
    O'Leary, Garry
    Olesen, Jorgen E.
    Palosuo, Taru
    Priesack, Eckart
    Rezaei, Ehsan Eyshi
    Ripoche, Dominique
    Ruane, Alex C.
    Semenov, Mikhail A.
    Shcherbak, Iurii
    Stockle, Claudio
    Stratonovitch, Pierre
    Streck, Thilo
    Supit, Iwan
    Tao, Fulu
    Thorburn, Peter
    [J]. NATURE PLANTS, 2017, 3 (10) : 833 - 833
  • [4] Cole crop yield response to reduced nitrogen rates
    Sanderson, KR
    Ivany, JA
    [J]. CANADIAN JOURNAL OF PLANT SCIENCE, 1999, 79 (01) : 149 - 151
  • [5] Crop yield response functions in nutrient application: A review
    Dhakal, Chandra
    Lange, Kelly
    [J]. AGRONOMY JOURNAL, 2021, 113 (06) : 5222 - 5234
  • [6] Uncertainty in temperature projections reduced using carbon cycle and climate observations
    Bodman, RogerW.
    Rayner, Peter J.
    Karoly, David J.
    [J]. NATURE CLIMATE CHANGE, 2013, 3 (08) : 725 - 729
  • [7] Uncertainty in temperature projections reduced using carbon cycle and climate observations
    Bodman R.W.
    Rayner P.J.
    Karoly D.J.
    [J]. Nature Climate Change, 2013, 3 (8) : 725 - 729
  • [8] Soil remediation decision making in presence of uncertainty in crop yield response
    Faechner, T
    Pyrcz, M
    Deutsch, CV
    [J]. GEODERMA, 2000, 97 (1-2) : 21 - 38
  • [9] Integrating machine learning and environmental variables to constrain uncertainty in crop yield change projections under climate change
    Li, Linchao
    Zhang, Yan
    Wang, Bin
    Feng, Puyu
    He, Qinsi
    Shi, Yu
    Liu, Ke
    Harrison, Matthew Tom
    Liu, De Li
    Yao, Ning
    Li, Yi
    He, Jianqiang
    Feng, Hao
    Siddique, Kadambot H. M.
    Yu, Qiang
    [J]. EUROPEAN JOURNAL OF AGRONOMY, 2023, 149
  • [10] Crop yield and soil fertility response to reduced tillage under organic management
    Berner, A.
    Hildermann, I.
    Fliessbach, A.
    Pfiffner, L.
    Niggli, U.
    Maeder, P.
    [J]. SOIL & TILLAGE RESEARCH, 2008, 101 (1-2): : 89 - 96