On instability of standing waves for the mass-supercritical fractional nonlinear Schrödinger equation

被引:0
|
作者
Van Duong Dinh
机构
[1] Université Toulouse CNRS,Institut de Mathématiques de Toulouse UMR5219
[2] HCMC University of Pedagogy,Department of Mathematics
关键词
Fractional nonlinear Schrödinger equation; Standing wave; Instability; Localized virial estimate; Blow-up; 35B44; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the focusing L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-supercritical fractional nonlinear Schrödinger equation i∂tu-(-Δ)su=-|u|αu,(t,x)∈R+×Rd,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} i\partial _t u - (-\varDelta )^s u = -|u|^\alpha u, \quad (t,x) \in \mathbb {R}^+ \times \mathbb {R}^d, \end{aligned}$$\end{document}where d≥2,d2d-1≤s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2, \frac{d}{2d-1} \le s <1$$\end{document} and 4sd<α<4sd-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{4s}{d}<\alpha <\frac{4s}{d-2s}$$\end{document}. By means of the localized virial estimate, we prove that the ground-state standing wave is strongly unstable by blowup. This result is a complement to a recent result of Peng–Shi (J Math Phys 59:011508, 2018) where the stability and instability of standing waves were studied in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-subcritical and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-critical cases.
引用
收藏
相关论文
共 50 条
  • [1] On instability of standing waves for the mass-supercritical fractional nonlinear Schrodinger equation
    Van Duong Dinh
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [2] Stability of Standing Waves for the Nonlinear Fractional Schrödinger Equation
    Jian Zhang
    Shihui Zhu
    [J]. Journal of Dynamics and Differential Equations, 2017, 29 : 1017 - 1030
  • [3] Instability of standing waves for nonlinear Schrödinger equation with delta potential
    Masahito Ohta
    [J]. São Paulo Journal of Mathematical Sciences, 2019, 13 : 465 - 474
  • [4] Orbital stability of periodic standing waves for the cubic fractional nonlinear Schr?dinger equation
    Moraes, Gabriel E. Bittencourt
    Borluk, Handan
    de Loreno, Guilherme
    Muslu, Gulcin M.
    Natali, Fabio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 341 : 263 - 291
  • [5] Strong Instability of Standing Waves for the Nonlinear Schrödinger Equation in Trapped Dipolar Quantum Gases
    Binhua Feng
    Qingxuan Wang
    [J]. Journal of Dynamics and Differential Equations, 2021, 33 : 1989 - 2008
  • [6] Concentrating standing waves for the fractional Schrödinger equation with critical nonlinearities
    Suhong Li
    Yanheng Ding
    Yu Chen
    [J]. Boundary Value Problems, 2015
  • [7] Existence of Standing Waves Solution for a Nonlinear Schrödinger Equation in RN
    Alves C.O.
    [J]. Journal of Elliptic and Parabolic Equations, 2015, 1 (2) : 231 - 241
  • [8] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [9] Derivation and rogue waves of the fractional nonlinear Schrödinger equation for the Rossby waves
    Geng, Jingxuan
    Fu, Lei
    Dong, Huanhe
    Ren, Yanwei
    [J]. CHAOS, 2023, 33 (12)
  • [10] Lectures on the Orbital Stability of Standing Waves and Application to the Nonlinear Schrödinger Equation
    C. A. Stuart
    [J]. Milan Journal of Mathematics, 2008, 76 : 329 - 399