The higher order neutral functional differential equation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$(1) \frac {d^n}{dt^n} [x(t)+ h(t)x ( \tau(t))]+ \sigma f (t,x (g(t)))=0$$
\end{document} is considered under the following conditions: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$n \geqslant 2, \sigma = \pm 1, \tau (t)$$
\end{document} is strictly increasing in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$t \in \left[ {t_0 ,\infty } \right), \tau (t) < t {\text{for}} t \geqslant t_0 ,\mathop { \lim }\limits_{t \to \infty } \tau (t) = \infty ,\mathop { \lim }\limits_{t \to \infty } g(t) = \infty , {\text{and}} f(t,u)$$
\end{document} is nonnegative on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left[ {t_0 ,\infty } \right) \times \left( {0,\infty } \right)$$
\end{document} and nondecreasing in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$u \in (0,\infty )$$
\end{document}. A necessary and sufficient condition is derived for the existence of certain positive solutions of (1).