Sparse Exploratory Factor Analysis

被引:0
|
作者
Nickolay T. Trendafilov
Sara Fontanella
Kohei Adachi
机构
[1] Open University,School of Mathematics and Statistics
[2] Imperial College London,Department of Medicine
[3] Osaka University,Graduate School of Human Sciences
来源
Psychometrika | 2017年 / 82卷
关键词
eigenvalue reparameterization; penalties inducing sparseness; optimization on matrix manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
Sparse principal component analysis is a very active research area in the last decade. It produces component loadings with many zero entries which facilitates their interpretation and helps avoid redundant variables. The classic factor analysis is another popular dimension reduction technique which shares similar interpretation problems and could greatly benefit from sparse solutions. Unfortunately, there are very few works considering sparse versions of the classic factor analysis. Our goal is to contribute further in this direction. We revisit the most popular procedures for exploratory factor analysis, maximum likelihood and least squares. Sparse factor loadings are obtained for them by, first, adopting a special reparameterization and, second, by introducing additional ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm penalties into the standard factor analysis problems. As a result, we propose sparse versions of the major factor analysis procedures. We illustrate the developed algorithms on well-known psychometric problems. Our sparse solutions are critically compared to ones obtained by other existing methods.
引用
收藏
页码:778 / 794
页数:16
相关论文
共 50 条
  • [1] Sparse Exploratory Factor Analysis
    Trendafilov, Nickolay T.
    Fontanella, Sara
    Adachi, Kohei
    [J]. PSYCHOMETRIKA, 2017, 82 (03) : 778 - 794
  • [2] Exploratory Factor Analysis
    Emerson, Robert Wall
    [J]. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS, 2017, 111 (03) : 301 - 302
  • [3] EXPLORATORY FACTOR ANALYSIS
    Balcar, K.
    [J]. CESKOSLOVENSKA PSYCHOLOGIE, 2013, 57 (03): : 295 - 296
  • [4] SPARSE DECOMPOSITIONS FOR EXPLORATORY PATTERN-ANALYSIS
    HOFFMAN, RL
    JAIN, AK
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (04) : 551 - 560
  • [5] Exploratory factor analysis in morphometry
    Machado, AMC
    Gee, JC
    Campos, MFM
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 378 - 385
  • [6] Bayesian exploratory factor analysis
    Conti, Gabriella
    Fruehwirth-Schnatter, Sylvia
    Heckman, James J.
    Piatek, Remi
    [J]. JOURNAL OF ECONOMETRICS, 2014, 183 (01) : 31 - 57
  • [7] The application of exploratory factor analysis
    Lam, ETC
    [J]. RESEARCH QUARTERLY FOR EXERCISE AND SPORT, 2006, 77 (01) : A8 - A8
  • [8] Robust exploratory factor analysis
    Kosfeld, R
    [J]. STATISTICAL PAPERS, 1996, 37 (02) : 105 - 122
  • [9] Exploratory factor analysis of the QMCA
    Quaal, Adam
    Passante, Gina
    Pollock, Steven J.
    Sadaghiani, Homeyra R.
    [J]. 2020 PHYSICS EDUCATION RESEARCH CONFERENCE (PERC), 2020, : 406 - 411
  • [10] Robustness of factor solutions in exploratory factor analysis
    Goretzko D.
    Bühner M.
    [J]. Behaviormetrika, 2022, 49 (1) : 131 - 148