Borcherds and Kac-Moody extensions of simple finite-dimensional Lie algebras

被引:0
|
作者
Jakob Palmkvist
机构
[1] Universit´e Libre de Bruxelles & International Solvay Institutes,Physique Th´eorique et Math´ematique
[2] Chalmers University of Technology,Department of Fundamental Physics
关键词
Supergravity Models; M-Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Borcherds superalgebra obtained by adding an odd (fermionic) null root to the set of simple roots of a simple finite-dimensional Lie algebra. We compare it to the Kac-Moody algebra obtained by replacing the odd null root by an ordinary simple root, and then adding more simple roots, such that each node that we add to the Dynkin diagram is connected to the previous one with a single line. This generalizes the situation in maximal supergravity, where the En symmetry algebra can be extended either to a Borcherds superalgebra or to the Kac-Moody algebra E11, and both extensions can be used to derive the spectrum of p-form potentials in the theory. We show that also in the general case, the Borcherds and Kac-Moody extensions lead to the same ‘p-form spectrum’ of representations of the simple finite-dimensional Lie algebra.
引用
收藏
相关论文
共 50 条
  • [1] Borcherds and Kac-Moody extensions of simple finite-dimensional Lie algebras
    Palmkvist, Jakob
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [2] A result on exponents of finite-dimensional simple Lie algebras and its application to Kac-Moody algebras
    Gradl, H
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 233 : 189 - 206
  • [3] Finite Dimensional Modules over Indefinite Kac-Moody Lie Algebras
    Xia, Limeng
    Hu, Hongmei
    Tan, Yilan
    [J]. FRONTIERS OF MATHEMATICS, 2024, 19 (01): : 161 - 170
  • [4] Semisymmetric Graphs Defined by Finite-Dimensional Generalized Kac-Moody Algebras
    Yang, Fuyuan
    Sun, Qiang
    Zhang, Chao
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3293 - 3305
  • [5] THE DETERMINATION OF CENTRAL EXTENSIONS OF KAC-MOODY LIE-ALGEBRAS
    HADDI, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (16): : 691 - 694
  • [6] Kac-Moody Lie Algebras Graded by Kac-Moody Root Systems
    Ben Messaoud, Hechmi
    Rousseau, Guy
    [J]. JOURNAL OF LIE THEORY, 2014, 24 (02) : 321 - 350
  • [7] On Gradations of Decomposable Kac-Moody Lie Algebras by Kac-Moody Root Systems
    Ben Messaoud, Hechmi
    Layouni, Marwa
    [J]. JOURNAL OF LIE THEORY, 2022, 32 (04) : 937 - 971
  • [8] Victor Kac and Robert Moody: their paths to Kac-Moody Lie algebras
    Berman, S
    Parshall, KH
    [J]. MATHEMATICAL INTELLIGENCER, 2002, 24 (01): : 50 - 60
  • [9] Victor kac and robert moody: their paths to kac-moody lie algebras
    Stephen Berman
    Karen Hunger Parshall
    [J]. The Mathematical Intelligencer, 2002, 24 : 50 - 60
  • [10] Lie-admissible algebras and Kac-Moody algebras
    Jeong, K
    Kang, SJ
    Lee, H
    [J]. JOURNAL OF ALGEBRA, 1997, 197 (02) : 492 - 505