The development and functional significance of neurons in the arcuate nucleus expressing tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase were studied in rat fetuses, neonates, and adults using immunocytochemical (single and double immunolabeling of tyrosine hydroxylase and aromatic L-amino acid decarboxylase) methods with a confocal microscope and computerized image analysis, HPLC with electrochemical detection, and radioimmunological analysis. Single-enzyme neurons containing tyrosine hydroxylase were first seen on day 18 of embryonic development in the ventrolateral part of the arcuate nucleus. Neurons expressing only aromatic L-amino acid decarboxylase or both enzymes of the dopamine synthesis pathway were first seen on day 20 of embryonic development, in the dorsomedial part of the nucleus. On days 20-21 of embryonic development, dopaminergic (containing both enzymes) neurons amounted to less than 1% of all neurons expressing tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase. Nonetheless, in the ex vivo arcuate nucleus and in primary neuron cultures from this structure, there were relatively high levels of dopamine and L-dihydroxyphenylalanine (L-DOPA), and these substances were secreted spontaneously and in response to stimulation. In addition, dopamine levels in the arcuate nucleus in fetuses were sufficient to support the inhibitory regulation of prolactin secretion by the hypophysis, which is typical of adult animals. During development, the proportion of dopaminergic neurons increased, reaching 38% in adult rats. Specialized contacts between single-enzyme tyrosine hydroxylase-containing and aromatic L-amino acid decarboxylase-containing neurons were present by day 21 of embryonic development; these were probably involved in transporting L-DOPA from the former neurons to the latter. It was also demonstrated that the axons of single-enzyme decarboxylase-containing neurons projected into the median eminence, supporting the secretion of dopamine into the hypophyseal portal circulation. Thus, dopamine is probably synthesized in the arcuate nucleus not only by dopaminergic neurons, but also by neurons expressing only tyrosine hydroxylase or aromatic L-amino acid decarboxylase.