A formula for gap between K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}-relatively bounded operator matrices in non-Archimedean Banach spaces

被引:0
|
作者
Aymen Ammar
Nawrez Lazrag
机构
[1] University of Sfax,Department of Mathematics, Faculty of Sciences of Sfax
关键词
Non-Archimedean Banach space; -relatively; Matrix of linear operator; Gap; Generalized convergence; 47S10; 39B42; 47A55;
D O I
10.1007/s12215-022-00807-x
中图分类号
学科分类号
摘要
To study the notion of gap between two operator matrices on non-Archimedean Banach spaces, it is natural to take stability of closedness for these matrices into account due to the definitions of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}-diagonally dominant and off-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}-diagonally dominant operator matrices. So, we shall study this problem in the present paper. Furthermore, under sufficient conditions, we give a counterpart of the generalized convergence for a operator matrix.
引用
收藏
页码:2469 / 2497
页数:28
相关论文
共 50 条