Large time asymptotics for the parabolic Anderson model driven by space and time correlated noise

被引:0
|
作者
Jingyu Huang
Khoa Lê
David Nualart
机构
[1] The University of Utah,Department of Mathematics
[2] University of Calgary,Departmentof Mathematics
[3] The University of Kansas,Department of Mathematics
关键词
Stochastic heat equation; Brownian bridge; Feynman-Kac formula; Exponential growth index; 60G15; 60H07; 60H15; 60F10; 65C30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the linear stochastic heat equation on Rℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^\ell $$\end{document}, driven by a Gaussian noise which is colored in time and space. The spatial covariance satisfies general assumptions and includes examples such as the Riesz kernel in any dimension and the covariance of the fractional Brownian motion with Hurst parameter H∈(14,12]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (\frac{1}{4}, \frac{1}{2}]$$\end{document} in dimension one. First we establish the existence of a unique mild solution and we derive a Feynman-Kac formula for its moments using a family of independent Brownian bridges and assuming a general integrability condition on the initial data. In the second part of the paper we compute Lyapunov exponents and lower and upper exponential growth indices in terms of a variational quantity.
引用
收藏
页码:614 / 651
页数:37
相关论文
共 50 条
  • [1] Large time asymptotics for the parabolic Anderson model driven by space and time correlated noise
    Huang, Jingyu
    Le, Khoa
    Nualart, David
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (04): : 614 - 651
  • [2] Large time asymptotics for the parabolic Anderson model driven by spatially correlated noise
    Huang, Jingyu
    Le, Khoa
    Nualart, David
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (03): : 1305 - 1340
  • [3] SPATIAL ASYMPTOTICS FOR THE PARABOLIC ANDERSON MODELS WITH GENERALIZED TIME-SPACE GAUSSIAN NOISE
    Chen, Xia
    [J]. ANNALS OF PROBABILITY, 2016, 44 (02): : 1535 - 1598
  • [4] Spatial asymptotics for the parabolic Anderson model driven by a Gaussian rough noise
    Chen Xia
    Hu Yaozhong
    David, Nualart
    Samy, Tindel
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22 : 1 - 38
  • [5] Moment asymptotics for parabolic Anderson equation with fractional time-space noise: In Skorokhod regime
    Chen, Xia
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (02): : 819 - 841
  • [6] Space-time fractional Anderson model driven by Gaussian noise rough in space
    Liu, Junfeng
    Wang, Zhi
    Wang, Zengwu
    [J]. STOCHASTICS AND DYNAMICS, 2023, 23 (01)
  • [7] High order Anderson parabolic model driven by rough noise in space
    Cao, Qiyong
    Gao, Hongjun
    [J]. STOCHASTICS AND DYNAMICS, 2022, 22 (01)
  • [8] HOLDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE
    Balan, Raluca M.
    Quer-Sardanyons, Lluis
    Song, Jian
    [J]. ACTA MATHEMATICA SCIENTIA, 2019, 39 (03) : 717 - 730
  • [9] Parabolic Anderson model with a fractional Gaussian noise that is rough in time
    Chen, Xia
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 792 - 825
  • [10] H?LDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE
    Raluca M BALAN
    Lluís QUER-SARDANYONS
    宋健
    [J]. Acta Mathematica Scientia, 2019, 39 (03) : 717 - 730