Grasshopper optimization algorithm for multi-objective optimization problems

被引:0
|
作者
Seyedeh Zahra Mirjalili
Seyedali Mirjalili
Shahrzad Saremi
Hossam Faris
Ibrahim Aljarah
机构
[1] University of Newcastle,School of Electrical Engineering and Computing
[2] Griffith University,Institute for Integrated and Intelligent Systems
[3] The University of Jordan,Business Information Technology Department, King Abdullah II School for Information Technology
来源
Applied Intelligence | 2018年 / 48卷
关键词
Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
This work proposes a new multi-objective algorithm inspired from the navigation of grass hopper swarms in nature. A mathematical model is first employed to model the interaction of individuals in the swam including attraction force, repulsion force, and comfort zone. A mechanism is then proposed to use the model in approximating the global optimum in a single-objective search space. Afterwards, an archive and target selection technique are integrated to the algorithm to estimate the Pareto optimal front for multi-objective problems. To benchmark the performance of the algorithm proposed, a set of diverse standard multi-objective test problems is utilized. The results are compared with the most well-regarded and recent algorithms in the literature of evolutionary multi-objective optimization using three performance indicators quantitatively and graphs qualitatively. The results show that the proposed algorithm is able to provide very competitive results in terms of accuracy of obtained Pareto optimal solutions and their distribution.
引用
收藏
页码:805 / 820
页数:15
相关论文
共 50 条
  • [1] Grasshopper optimization algorithm for multi-objective optimization problems
    Mirjalili, Seyedeh Zahra
    Mirjalili, Seyedali
    Saremi, Shahrzad
    Faris, Hossam
    Aljarah, Ibrahim
    [J]. APPLIED INTELLIGENCE, 2018, 48 (04) : 805 - 820
  • [2] Modified Multi-Objective Particle Swarm Optimization Algorithm for Multi-objective Optimization Problems
    Qiao, Ying
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 520 - 527
  • [3] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    [J]. SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [4] Multi-objective boxing match algorithm for multi-objective optimization problems
    Tavakkoli-Moghaddam, Reza
    Akbari, Amir Hosein
    Tanhaeean, Mehrab
    Moghdani, Reza
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [5] Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems
    Zouache, Djaafar
    Arby, Yahya Quid
    Nouioua, Farid
    Ben Abdelaziz, Fouad
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 129 : 377 - 391
  • [6] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [7] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    [J]. Soft Computing, 2017, 21 : 5883 - 5891
  • [8] Brain Storm Optimization Algorithm for Multi-objective Optimization Problems
    Xue, Jingqian
    Wu, Yali
    Shi, Yuhui
    Cheng, Shi
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 513 - 519
  • [9] Multi-objective optimization of diesel engine performance and emission using grasshopper optimization algorithm
    Veza, Ibham
    Karaoglan, Aslan Deniz
    Ileri, Erol
    Afzal, Asif
    Hoang, Anh Tuan
    Tamaldin, Noreffendy
    Herawan, Safarudin Gazali
    Abbas, Muhammed Mujtaba
    Said, Mohd Farid Muhamad
    [J]. FUEL, 2022, 323
  • [10] MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems
    Khalid, Asmaa M. M.
    Hamza, Hanaa M. M.
    Mirjalili, Seyedali
    Hosny, Khaid M. M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23): : 17319 - 17347