Rotating black hole in Rastall theory

被引:1
|
作者
Rahul Kumar
Sushant G. Ghosh
机构
[1] Jamia Millia Islamia,Centre for Theoretical Physics
[2] Jamia Millia Islamia,Multidisciplinary Centre for Advanced Research and Studies (MCARS)
[3] University of KwaZulu-Natal,Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr–Newman black hole solution. In turn, we analyze the specific cases of the Kerr–Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter (a=aE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=a_{E}$$\end{document}), which corresponds to an extremal black hole with degenerate horizons, while for a<aE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a<a_{E}$$\end{document}, it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for a>aE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>a_{E}$$\end{document} with value aE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_E$$\end{document} is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential.
引用
收藏
相关论文
共 50 条
  • [1] Rotating black hole in Rastall theory
    Kumar, Rahul
    Ghosh, Sushant G.
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (09):
  • [2] Black hole solutions in Rastall theory
    Heydarzade, Y.
    Moradpour, H.
    Darabi, F.
    CANADIAN JOURNAL OF PHYSICS, 2017, 95 (12) : 1253 - 1256
  • [3] Extended black hole solutions in Rastall theory of gravity
    Sharif, M.
    Sallah, M.
    ASTRONOMY AND COMPUTING, 2025, 50
  • [4] Perturbed thermodynamics of charged black hole solution in Rastall theory
    Behnam Pourhassan
    Sudhaker Upadhyay
    The European Physical Journal Plus, 136
  • [5] Perturbed thermodynamics of charged black hole solution in Rastall theory
    Pourhassan, Behnam
    Upadhyay, Sudhaker
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (03):
  • [6] Black hole solutions surrounded by perfect fluid in Rastall theory
    Heydarzade, Y.
    Darabi, F.
    PHYSICS LETTERS B, 2017, 771 : 365 - 373
  • [7] Shadows of black hole surrounded by anisotropic fluid in Rastall theory
    Kumar, Rahul
    Singh, Balendra Pratap
    Ali, Md Sabir
    Ghosh, Sushant G.
    PHYSICS OF THE DARK UNIVERSE, 2021, 34
  • [8] Thermodynamic geometry of a black hole surrounded by perfect fluid in Rastall theory
    Soroushfar, Saheb
    Saffari, Reza
    Upadhyay, Sudhaker
    GENERAL RELATIVITY AND GRAVITATION, 2019, 51 (10)
  • [9] Minimally deformed regular Hayward black hole solutions in Rastall theory
    Sharif, M.
    Sallah, Malick
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [10] Thermodynamic geometry of a black hole surrounded by perfect fluid in Rastall theory
    Saheb Soroushfar
    Reza Saffari
    Sudhaker Upadhyay
    General Relativity and Gravitation, 2019, 51