On EA-equivalence of certain permutations to power mappings

被引:0
|
作者
Yongqiang Li
Mingsheng Wang
机构
[1] Institute of Software,The State Key Laboratory of Information Security
[2] Chinese Academy of Sciences,undefined
[3] Graduate School of Chinese Academy of Sciences,undefined
来源
关键词
AB function; APN function; EA-equivalence; CCZ-equivalence; Permutation polynomial; S-box; 06E30; 11T06; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the existence of permutation polynomials of the form xd + L(x) on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{F}_{2^n}}}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{L(x)\in\mathbb{F}_{2^n}[x]}}$$\end{document} is a linearized polynomial. It is shown that for some special d with gcd(d, 2n−1) > 1, xd + L(x) is nerve a permutation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{F}_{2^n}}}$$\end{document} for any linearized polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{L(x)\in\mathbb{F}_{2^n}[x]}}$$\end{document} . For the Gold functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{x^{2^i+1}}}$$\end{document} , it is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{x^{2^i+1}+L(x)}}$$\end{document} is a permutation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{F}_{2^n}}}$$\end{document} if and only if n is odd and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{L(x)=\alpha^{2^i}x+\alpha x^{2^i}}}$$\end{document} for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\alpha\in\mathbb{F}_{2^n}^{*}}}$$\end{document} . We also disprove a conjecture in (Macchetti Addendum to on the generalized linear equivalence of functions over finite fields. Cryptology ePrint Archive, Report2004/347, 2004) in a very simple way. At last some interesting results concerning permutation polynomials of the form x−1 + L(x) are given.
引用
收藏
页码:259 / 269
页数:10
相关论文
共 50 条
  • [1] On EA-equivalence of certain permutations to power mappings
    Li, Yongqiang
    Wang, Mingsheng
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2011, 58 (03) : 259 - 269
  • [2] Deciding EA-equivalence via invariants
    Nikolay Kaleyski
    [J]. Cryptography and Communications, 2022, 14 : 271 - 290
  • [3] Deciding EA-equivalence via invariants
    Kaleyski, Nikolay
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (02): : 271 - 290
  • [4] Relation between o-equivalence and EA-equivalence for Niho bent functions
    Davidova, Diana
    Budaghyan, Lilya
    Carlet, Claude
    Helleseth, Tor
    Ihringer, Ferdinand
    Penttila, Tim
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2021, 72
  • [5] The c-differential behavior of the inverse function under the EA-equivalence
    Pantelimon Stănică
    Aaron Geary
    [J]. Cryptography and Communications, 2021, 13 : 295 - 306
  • [6] The c-differential behavior of the inverse function under the EA-equivalence
    Stanica, Pantelimon
    Geary, Aaron
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (02): : 295 - 306
  • [7] The Nonexistence of Permutations EA-Equivalent to Certain AB Functions
    Li, Yongqiang
    Wang, Mingsheng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (01) : 672 - 679
  • [8] RELATIONS AMONG CERTAIN MAPPINGS AND CONDITIONS FOR THEIR EQUIVALENCE
    SIWIEC, F
    MANCUSO, VJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 218 - &
  • [9] Equivalence of certain iteration processes via averaged mappings
    Anjum, Rizwan
    Khan, Safeer Hussain
    [J]. JOURNAL OF ANALYSIS, 2024, 32 (02): : 1181 - 1198
  • [10] Equivalence of certain iteration processes via averaged mappings
    Rizwan Anjum
    Safeer Hussain Khan
    [J]. The Journal of Analysis, 2024, 32 : 1181 - 1198