Self-consistent Modeling of Gamma-ray Spectra from Solar Flares with the Monte Carlo Simulation Package FLUKA

被引:0
|
作者
Daneele S. Tusnski
Sergio Szpigel
Carlos Guillermo Giménez de Castro
Alexander L. MacKinnon
Paulo José A. Simões
机构
[1] Universidade Presbiteriana Mackenzie,Centro de Rádio
[2] CONICET,Astronomia e Astrofísica Mackenzie (CRAAM), Escola de Engenharia
[3] University of Glasgow,Instituto de Astronomía y Física del Espacio
来源
Solar Physics | 2019年 / 294卷
关键词
FLUKA; Flares, models; Gamma-ray spectra;
D O I
暂无
中图分类号
学科分类号
摘要
We use the Monte Carlo particle physics code FLUKA (Fluktuierende Kaskade) to calculate γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}-ray spectra expected from solar flare energetic ion distributions. The FLUKA code includes robust physics-based models for electromagnetic, hadronic and nuclear interactions, sufficiently detailed for it to be a useful tool for calculating nuclear de-excitation, positron-annihilation and neutron-capture line fluxes and shapes, as well as ≈GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,\text{GeV}$\end{document} continuum radiation from pion decay products. We show nuclear de-excitation γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}-ray line model spectra from a range of assumed primary accelerated ion distributions and find them to be in good agreement with those found using the code of Murphy et al. (2009). We also show full γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}-ray model spectra which exhibit all the typical structures of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}-ray spectra observed in solar flares. From these model spectra we build templates which are incorporated into the software package Objective Spectral Executive (OSPEX) and used to fit the combined Fermi Gamma-ray Burst Monitor (GBM)/Large Area Telescope (LAT) spectrum of the 2010 June 12 solar flare, providing a statistically acceptable result. To the best of our knowledge, the fit carried out with the FLUKA templates for the full γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}-ray spectrum can be regarded as the first attempt to use a single code to implement a self-consistent treatment of the several spectral components in the photon energy range from ≈100skeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,100\mbox{s}~\text{keV}$\end{document} to ≈100sMeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,100\mbox{s}~\text{MeV}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Self-consistent Modeling of Gamma-ray Spectra from Solar Flares with the Monte Carlo Simulation Package FLUKA
    Tusnski, Daneele S.
    Szpigel, Sergio
    Gimenez de Castro, Carlos Guillermo
    MacKinnon, Alexander L.
    Simoes, Paulo Jose A.
    SOLAR PHYSICS, 2019, 294 (08)
  • [2] MONTE CARLO SIMULATION OF AN ORGANIC SCINTILLATOR RESPONSE OF GAMMA-RAY SPECTRA
    MARTIN, IM
    BUIVAN, A
    VEDRENNE, G
    NUCLEAR INSTRUMENTS & METHODS, 1971, 95 (03): : 545 - &
  • [3] MONTE-CARLO SIMULATION OF GAMMA-RAY SPECTRA FROM SEMICONDUCTOR-DETECTORS
    OLSCHNER, F
    LUND, JC
    STERN, I
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1989, 36 (01) : 1176 - 1179
  • [4] THE MONTE CARLO FLUKA SIMULATION OF GAMMA-RAY AND NEUTRON ATTENUATION CHARACTERISTICS OF REFRACTORY HIGH ENTROPY ALLOYS
    Ravangvong, Sunantasak
    Wattana, Wanna
    Glumglomchit, Punsak
    Teerasetsak, Suchanan
    Chuawongboon, Phirakarn
    Libprasert, Thanapat
    Tantiamnuay, Papungkorn
    Sriwongsa, Kittisak
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2024, 31 (02): : 1 - 7
  • [5] Effects of compton scattering on the gamma-ray spectra of solar flares
    Kotoku, Jun'ichi
    Makishima, Kazuo
    Matsumoto, Yukari
    Kohama, Mitsuhiro
    Terada, Yukikatsu
    Tamagawa, Toru
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2007, 59 (06) : 1161 - 1174
  • [6] A benchmark for Monte Carlo simulation in gamma-ray spectrometry
    Lepy, M. C.
    Thiam, C.
    Anagnostakis, M.
    Galea, R.
    Gurau, D.
    Hurtado, S.
    Karfopoulos, K.
    Liang, J.
    Liu, H.
    Luca, A.
    Mitsios, I
    Potiriadis, C.
    Savva, M., I
    Thanh, T. T.
    Thomas, V
    Townson, R. W.
    Vasilopoulou, T.
    Zhang, M.
    APPLIED RADIATION AND ISOTOPES, 2019, 154
  • [7] Gamma-ray interaction in Ge: A Monte Carlo simulation
    Gao, F.
    Campbell, L. W.
    Devanathan, R.
    Xie, Y. L.
    Zhang, Y.
    Peurrung, A. J.
    Weber, W. J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 255 (01): : 286 - 290
  • [8] Monte Carlo simulation of HEMT based on self-consistent method
    Ueno, H
    Yamakawa, S
    Hamaguchi, C
    Miyatsuji, K
    VLSI DESIGN, 1998, 6 (1-4) : 13 - 16
  • [9] Self-consistent Monte Carlo model for ECRIS plasma simulation
    Mendez-Giono, J. A.
    Minea, T.
    Thuillier, T.
    Revel, A.
    19TH INTERNATIONAL CONFERENCE ON ION SOURCES - ICIS2021, 2022, 2244
  • [10] Self-Consistent Electrothermal Monte Carlo Modeling of Nanowire MISFETs
    Sadi, Toufik
    Thobel, Jean-Luc
    Dessenne, Francois
    Dalle, Christophe
    2010 14TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS (IWCE 2010), 2010, : 247 - 250