Corotating Interaction Regions during Solar Cycle 24: A Study on Characteristics and Geoeffectiveness

被引:0
|
作者
Rajkumar Hajra
Jibin V. Sunny
机构
[1] Indian Institute of Technology Indore,
来源
Solar Physics | 2022年 / 297卷
关键词
Coronal Holes; Magnetic fields, Interplanetary; Magnetic Reconnection; Magnetosphere, Geomagnetic Disturbances; Solar Cycle; Solar Wind;
D O I
暂无
中图分类号
学科分类号
摘要
Corotating interaction regions (CIRs) form in the interaction region between the solar-wind high-speed streams and slow streams, leading to compressed plasma and magnetic fields. Using solar-wind measurements upstream of Earth, we identified 290 CIRs encountered by Earth during January 2008 through December 2019 (Solar Cycle 24). The occurrence rate is the maximum during the solar-cycle descending phase (≈33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 33$\end{document} year−1), followed by occurrences during solar minimum (≈24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 24$\end{document} year−1), the ascending phase (≈22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 22$\end{document} year−1), and solar maximum (≈11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 11$\end{document} year−1). At 1 AU, CIRs are found to be large-scale interplanetary structures with an average (median) duration of ≈26\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 26$\end{document} hours (≈24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 24$\end{document} hours) and radial extent of ≈0.31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 0.31$\end{document} AU (≈0.27\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 0.27$\end{document} AU). CIRs are characterized by average (median) plasma density of ≈29\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 29$\end{document} cm−3 (≈26\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 26$\end{document} cm−3), ram pressure of ≈11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 11$\end{document} nPa (≈9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 9$\end{document} nPa), temperature of ≈5×105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 5\times 10^{5}$\end{document} K (≈4×105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 4\times 10^{5}$\end{document} K), and magnetic-field magnitude of ≈15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 15$\end{document} nT (≈14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 14$\end{document} nT). The CIR characteristic features exhibit no clear solar-cycle phase dependence. About 30% of the CIRs are found to be geoeffective, causing geomagnetic storms with the peak SYM-H ≤−50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\leq -50$\end{document} nT; 25% caused moderate storms (−50 nT ≥ SYM-H >−100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$>-100$\end{document} nT), and 5% caused intense storms (SYM-H ≤−100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\leq -100$\end{document} nT). The geoeffectiveness is found to decrease with the decreasing solar flux. CIRs during equinoxes are found to be more geoeffective compared to those during solstices. On average, SYM-H is strongly associated with the CIR plasma characteristic parameters (anti-correlation coefficient r=−0.65\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r=-0.65$\end{document} to −0.89), while the association is weaker for the AE-index (r=0.41\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r=0.41$\end{document} to 0.67).
引用
收藏
相关论文
共 50 条
  • [1] Corotating Interaction Regions during Solar Cycle 24: A Study on Characteristics and Geoeffectiveness
    Hajra, Rajkumar
    Sunny, Jibin, V
    SOLAR PHYSICS, 2022, 297 (03)
  • [2] Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23
    Zhang, Y.
    Sun, W.
    Feng, X. S.
    Deehr, C. S.
    Fry, C. D.
    Dryer, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A8)
  • [3] Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23
    Badruddin, A.
    Falak, Z.
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (08)
  • [4] Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23
    A. Badruddin
    Z. Falak
    Astrophysics and Space Science, 2016, 361
  • [5] Interplanetary Sheaths and Corotating Interaction Regions: A Comparative Statistical Study on Their Characteristics and Geoeffectiveness
    Hajra, Rajkumar
    Sunny, Jibin, V
    Babu, Megha
    Nair, Archana Giri
    SOLAR PHYSICS, 2022, 297 (07)
  • [6] Interplanetary Sheaths and Corotating Interaction Regions: A Comparative Statistical Study on Their Characteristics and Geoeffectiveness
    Rajkumar Hajra
    Jibin V. Sunny
    Megha Babu
    Archana Giri Nair
    Solar Physics, 2022, 297
  • [7] Solar wind flow angle and geoeffectiveness of corotating interaction regions: First results
    Rout, Diptiranjan
    Chakrabarty, D.
    Janardhan, P.
    Sekar, R.
    Maniya, Vrunda
    Pandey, Kuldeep
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (10) : 4532 - 4539
  • [8] Energetics of magnetic storms driven by corotating interaction regions: A study of geoeffectiveness
    Turner, Niescja E.
    Mitchell, Elizabeth J.
    Knipp, Delores J.
    Emery, Barbara A.
    RECURRENT MAGNETIC STORMS: COROTATING SOLAR WIND STREAMS, 2006, 167 : 113 - 124
  • [9] Geoeffectiveness of corotating interaction regions as measured by Dst index
    Alves, M. V.
    Echer, E.
    Gonzalez, W. D.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A7)
  • [10] The Characteristics of Solar Wind Parameters During Minimum Periods of Solar Cycle 24 and Impact on Geoeffectiveness
    Herdiwijaya, Dhani
    INTERNATIONAL CONFERENCE ON PHYSICS AND ITS APPLICATIONS (ICPAP 2011), 2012, 1454 : 25 - 28