Exponential Polynomials as Solutions of Differential-Difference Equations of Certain Types

被引:0
|
作者
Kai Liu
机构
[1] Nanchang University,Department of Mathematics
[2] University of Eastern Finland,Department of Physics and Mathematics
来源
关键词
Differential-difference equations; exponential polynomials; finite order; Primary 39B32; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the exponential polynomials solutions of non-linear differential-difference equation f(z)n+q(z)eQ(z)f(k)(z+c)=P(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(z)^{n}+q(z)e^{Q(z)}f^{(k)}(z+c) = P(z)}$$\end{document}, where q(z), Q(z), P(z) are polynomials and n, k are positive integers and the linear differential-difference equation f′(z)=f(z+c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f'(z) = f(z + c)}$$\end{document}. Our results show that any exponential polynomials’ solutions of the above two differential-difference equations should have special forms. This paper is a continuation of Wen et al. (Acta Math Sin 28(7):1295–1306, 2012).
引用
收藏
页码:3015 / 3027
页数:12
相关论文
共 50 条
  • [1] Exponential Polynomials as Solutions of Differential-Difference Equations of Certain Types
    Liu, Kai
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3015 - 3027
  • [2] Exponential Polynomials as Solutions of Nonlinear Differential-Difference Equations
    Gao, L. K.
    Liu, K.
    Liu, X. L.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (02): : 77 - 89
  • [3] Exponential Polynomials as Solutions of Nonlinear Differential-Difference Equations
    L. K. Gao
    K. Liu
    X. L. Liu
    [J]. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2022, 57 : 77 - 89
  • [4] Exponential Polynomials and Nonlinear Differential-Difference Equations
    Xu, Junfeng
    Rong, Jianxun
    [J]. JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [5] The zeros of differential-difference polynomials of certain types
    Xin Ling Liu
    Li Na Wang
    Kai Liu
    [J]. Advances in Difference Equations, 2012
  • [6] The zeros of differential-difference polynomials of certain types
    Liu, Xin Ling
    Wang, Li Na
    Liu, Kai
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [7] On the uniqueness of certain types of differential-difference polynomials
    Banerjee, A.
    Majumder, S.
    [J]. ANALYSIS MATHEMATICA, 2017, 43 (03) : 415 - 444
  • [8] On the uniqueness of certain types of differential-difference polynomials
    A. Banerjee
    S. Majumder
    [J]. Analysis Mathematica, 2017, 43 : 415 - 444
  • [9] The zeros on complex differential-difference polynomials of certain types
    Changjiang Song
    Kai Liu
    Lei Ma
    [J]. Advances in Difference Equations, 2018
  • [10] The zeros on complex differential-difference polynomials of certain types
    Song, Changjiang
    Liu, Kai
    Ma, Lei
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,