A Partially Parallel Prediction-Correction Splitting Method for Convex Optimization Problems with Separable Structure

被引:1
|
作者
Bai F.-S. [1 ]
Xu L. [1 ]
机构
[1] School of Mathematical Sciences, Chongqing Normal University, Chongqing
关键词
Block-separable convex optimization; Extended alternating direction method of multipliers; Prediction–correction splitting method;
D O I
10.1007/s40305-017-0163-5
中图分类号
学科分类号
摘要
In this paper, we propose a partially parallel prediction-correction splitting method for solving block-separable linearly constrained convex optimization problems with three blocks. Unlike the extended alternating direction method of multipliers, the last two subproblems in the prediction step are solved parallelly, and a correction step is employed in the method to correct the dual variable and two blocks of the primal variables. The step size adapted in the correction step allows for major contribution from the latest solution point to the iteration point. Some numerical results are reported to show the effectiveness of the presented method. © 2017, Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:529 / 544
页数:15
相关论文
共 50 条
  • [1] A proximal partially parallel splitting method for separable convex programs
    Wang, Kai
    Desai, Jitamitra
    He, Hongjin
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (01): : 39 - 68
  • [2] A Parallel Splitting Method for Separable Convex Programs
    Wang, K.
    Han, D. R.
    Xu, L. L.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) : 138 - 158
  • [3] A Parallel Splitting Method for Separable Convex Programs
    K. Wang
    D. R. Han
    L. L. Xu
    Journal of Optimization Theory and Applications, 2013, 159 : 138 - 158
  • [4] A New Implementable Prediction-Correction Method for Monotone Variational Inequalities with Separable Structure
    Ma, Feng
    Ni, Mingfang
    Yu, Zhanke
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [5] A Decentralized Prediction-Correction Method for Networked Time-Varying Convex Optimization
    Simonetto, Andrea
    Mokhtari, Aryan
    Koppel, Alec
    Leus, Geert
    Ribeiro, Alejandro
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 509 - 512
  • [6] A Quasi-Newton Prediction-Correction Method for Decentralized Dynamic Convex Optimization
    Simonetto, Andrea
    Koppel, Alec
    Mokhtari, Aryan
    Leus, Geert
    Ribeiro, Alejandro
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1934 - 1939
  • [7] A PARALLEL GAUSS-SEIDEL METHOD FOR CONVEX PROBLEMS WITH SEPARABLE STRUCTURE
    Yang, Xin
    Wang, Nan
    Xu, Lingling
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 557 - 570
  • [8] Prediction-Correction Interior-Point Method for Time-Varying Convex Optimization
    Fazlyab, Mahyar
    Paternain, Santiago
    Preciado, Victor M.
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (07) : 1973 - 1986
  • [9] Prediction-Correction Methods for Time-Varying Convex Optimization
    Simonetto, Andrea
    Koppel, Alec
    Mokhtari, Aryan
    Leus, Geert
    Ribeiro, Alejandro
    2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 666 - 670
  • [10] An improved prediction-correction method for monotone variational inequalities with separable operators
    Xu, M. H.
    Jiang, J. L.
    Li, B.
    Xu, B.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (06) : 2074 - 2086